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A Discrete General Class of Continuous Distributions

Taghreed Al-Masoud

ABSTRACT

Quality and validity of products of all kinds become very
important to pay attention so that they can withstand the competition in
the market due to the multiplicity of forms and sources of products. It is
well known that the consumer cares about the quality of industrial
products of all types which are displayed in markets. They should be of
high efficiency and longer life. In concordance with the requirements of
the consumer, factory owners seek desperately to attract consumers to
their products. The most important result of this research is the
emergence of the so-called guarantee certificates that have shared
preference among consumers for alternative warranty-free product.
Therefore it is very necessary to shed light on how to determine the
appropriate duration of guarantee certificates accurately, otherwise the
error identified could cost companies huge losses. Determining of the
appropriate duration of such certificates requires the collection of
information about the product through the design of the so-called life-
testing experiments or tests of Reliability. This should be done before
sending product to markets because the information obtained from such
experiments — in addition to their importance in determining the duration
of guarantee certificates - can be used in other fields. For instance, in
pharmaceutical studies, we would like to design life-testing experiments
on drugs to determine their effectiveness duration and expiry date.
Indeed, there are so many areas where designing such experiments is of
paramount importance.

In life-testing experiments, sometimes it becomes impossible to
measure the life of a product or its expiry date by continuous scale, like
in turning a device on and off during its lifetime, because turning on and
off is a random separate variable and in some cases validity of the data is
measured by the number of operating times. As for survival analysis, it is
possible to record the number of days remaining for lung cancer patients



During the treatment period. In this context, standard discrete
distributions like geometric and negative binomial have been employed
to model life time data.

In this thesis a general class of continuous distributions is
considered. Furthermore, a generated discrete life distribution based on a
continuous distribution, by using the general approach of discretizing a
continuous distribution.

Several discrete lifetime distributions are proposed with their
properties and some measures of reliability, such as discrete modified
Weibull extended, discrete modified Weibull type I, discrete modified
Weibull type Il, discrete Chen (2000), and discrete linear failure rate
distributions.

A Mathcad simulation study is conducted to the properties and the
distributional characteristics of the new discrete distributions. The
performance of the estimators of the parameters is presented.

vi
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Chapter |

Introduction

1.1 Foreword

Survival analysis is a branch of Statistics which deals with death in biological
organisms and failure in mechanical systems. This topic is called Reliability theory
or reliability analysis in engineering and it is called duration analysis or duration
modeling in Economics or Sociology. More generally, survival analysis involves the
modeling of time to event data. In this context, death or failure is considered an

"event™ in the survival analysis literature.
1.2 Research Gaps

In life testing experiments, it is sometimes impossible or inconvenient to
measure the life length of a device, on a continuous scale. For example, in the case of
an on/off switching device, the life time of the switch is a discrete random variable.
In many particular situations, reliability data are measured in terms of the number of
runs, cycles, or shocks the device sustains before it fails. In survival analysis, it may
record the number of days of survival for lung cancer patients since therapy, or the
times from remission to relapse are also usually recorded in number of days. Many

continuous distributions can be discretized. In this context, the geometric and


http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Reliability_theory
http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Sociology

negative binomial distributions are known discrete alternatives for the exponential

and gamma distributions, respectively.

1.3 Motivation

Discrete distributions are finding their way into survival analysis. The
lifetimes of many components are being measured by the number of completed
cycles of operation or strokes. Even for a continuous operation, involving a
continuous measurement of lifetime, observations made at periodic time points give
rise to a discrete situation, and a discrete model may be more appropriate. Nakagawa
and Osaki (1975) discretized the Weibull distribution. Nakagawa (1978) defined the
discrete extreme distributions. Stein and Dattero (1984) discussed a new discrete
Weibull distribution. Roy (2004) proposed a discrete Rayleigh distribution. Krishnah
and Pundir (2009) presented the discrete Burr X1l and Pareto distributions. Jazi, Lia
and Alamatsaz (2010) proposed the discrete inverse Weibull distribution. The
discrete version of Lindley distribution was introduced by Deniz et al. (2011). Al-

Dayian and Al-Huniti (2012) introduced the discrete Burr Type Il distribution.

The modified Weibull extension distribution was proposed by Xie et al.
(2002). It is an extension of a two parameter model proposed by Chen (2000), and it
involves three parameters. This model is capable of modeling bathtub-shaped failure
rate lifetime data. It can be written as an exact form of a mixture of distributions
under certain conditions, and provides extra flexibility to the density function over
positive integer.

The modified Weibull distribution has been introduced by Sarhan and
Zaindin (2009a). This distribution generalizes the exponential, Rayleigh, linear

failure rate, and Weibull distributions. These are the most commonly used



distributions in reliability and life testing. They have several desirable properties and
nice physical interpretations. The modified Weibull distribution that generalizes all
the above distributions can be used to describe several reliability models.

A new lifetime distribution capable of modeling a bathtub-shaped hazard-rate
function which called new modified Weibull distribution studied by Lai et al. (2003).
It can be considered as a useful three-parameter generalization of the Weibull
distribution.

1.4 Methodology

Discrete distributions are used in reliability when lifetime measurements are
taken in a discrete manner. Many continuous distributions can be discretized. There
exist two approaches of discretizing distributions. The first approach of discretizing
reliability distributions has been defined by Nakagawa and Osaki (1975). This approach

has been used in the present study.

1.5 Contributions

In our present study a general class of continuous distributions is discretized.
Some generalized discrete models such as DMWE, DMW (1) and DMW (II)
distributions are introduced. Some reliability measures and characteristics of the
discretized general class are investigated. The parameters of the studied distributions
are estimated. Three estimation methods are used. The used estimation methods are:
the proportion method (PM), the method of moments (MM), and the maximum
likelihood method (MLM). The estimation results are compared. New discretized
distributions are obtained. This includes discrete Chen distribution (DChen) and
discrete linear failure rate distribution (DLFR). Simulation studies using MathCAD

software are conducted. Theoretical and numerical results are obtained.



Chapter 11

Definitions and Notations

This chapter involves some definitions, which used throughout the thesis.
2.1 Reliability Measures

The basic definitions of reliability measures for systems, with continuous

and discrete lifetimes, are given.

2.1.1 Reliability Measures in the Continuous Case

Let T be random lifetime with a continuous distribution onR*.

Definition 2.1: The reliability functionS(x) is defined for all t > 0 as follows
S(t) = P(T > t).

Definition 2.2: The failure rate functionr(t) is defined for all ¢ > 0 as follows
r(t) = f(©)/S(®).

Definition 2.3: The residual reliability function R(s|t) is defined for all ,s = 0, as

R(s|t) = P(T > s+ t|T > t).

= S(s +t)/S(t).



Definition 2.4: The cumulative hazard function H(t) is defined for all t > 0 by

H(t) = —InS(t).

Definition 2.5: T is said to be increasing failure rate (IFR) if and only if,

equivalently:
IFR1: The failure rate function r(t) is an increasing function of t.
IFR2: For alls = 0, the residual reliability function R(s|t) is decreasing with t.

Definition 2.6: T is called increasing failure rate in average (IFRA) if and only if,

equivalently:

IFRAL: [S(t)]*¢ is a decreasing function of t.

IFRA2: H(t)/t is an increasing function of t.

The equivalence between IFRA1 and IFRAZ2 is immediate since H(t) = —InS(t).
(Barlow (2001))

2.1.2 Reliability Measures in the Discrete Case

Let the random variable T be a discrete system lifetime. T is defined over the
set of positive integers N*. Let p(k) = P(T = k) be the probability that the system

fails at time k.

Definition 2.7: The discrete reliability function S(k) is defined to be the probability

that the system is still alive at time k. That is
S(k) =P(T > k)

= Yizkr1P() (2.1)



Definition 2.8: The discrete failure rate function r(k) is defined, for all k € N*, by
r(k) = P(T = k|T = k)

_ S(k-1)-S(k)

SemD) (2.2)

Definition 2.9: The discrete cumulative hazard function H(k) is defined, for all

k € N*, by
H(k) = XK, 7(0) (2.3)

Definition 2.10: The discrete residual reliability function at time k is denoted by

R(ilk) and is defined for all i € N*, by

R(ilk) = P(T > k+i|T > k)

_ S(k+D)
=50 (2.4)
Definition 2.11: The second rate of failure sequence{SRF (k)};s1, is defined as
SRF(k) = —=InS(k) + InS(k — 1)
_ S(k—-1)
= In= D) (2.5)

Definition 2.12: T is said to be a discrete increasing failure rate (IFR) if and only if,

equivalently:

IFR1: {r(k)}s1 is an increasing sequence.

IFR2: Forall s € N*, {R(s|k)}is, IS a decreasing sequence.

IFR3: {In S (k)},s, is a concave sequence.



Definition 2.13: T is said to be a discrete increasing failure rate in average (IFRA) if

and only if, equivalently:
IFRAL: {(S(k))l/"}k>1 is a decreasing sequence.

IFRA2: {H(t)/k};=1 1S an increasing sequence. (2.6)
(Barlow (2001))
2.2 Some Methods of Estimation

The maximum likelihood, moments, proportion methods of estimation will be
discussed. These methods are applied to estimate the unknown parameters of the
considered probability distributions.

2.2.1 The Proportion Method

The proportion method (PM) proposed by Khan et al. (1989) is used to
estimate the parameters. Let x,, x5, ..., x; be an observed sample from a distribution
with probability mass function P(x; 64, ..., 8;). Define the indicator function I, (x;)

of the value u by

e if x; =u,
bu(xi) = {O if x; # u.

Denote by f,, = Y. I,,(x;) the frequency of the value u in the observed sample.
Therefore, the proportion (relative frequency) r, = f,,/n is can be used to estimate
the probability P(u; 64, ..., 6).

Consequently, the probability P(1;6,,...,0;) is the proportion r; in the
observed sample. Therefore, 8, is the estimate of 6,, with f; as the observed

frequency of the value 1.



Similarly, the probability P(2; 84, ..., 6)) is the proportion r, in the observed
sample. Therefore, 8, is the estimate of 8, with £, as the observed frequency of the

value 2, and so on. (Khan et al. (1989))
2.2.2 The Moments Method

Consider a population with a pdf f(x; 64, ..., 8;), depending on one or more

parameters 6, ..., 8. The j** moment about the origin H, is defined by
ui(6y,..,60) =EX))  j=12,.,

Let X,,..,X, is a random sample of size n from f(x;#6,,...,08;). The j* sample

moment M; is defined by
' 1 i .
Mj = ;Zln:lxij, j=172,...

The method of moments is to choose as estimators of the parameters 64, ..., 8, the
values 8, ..., 8, that render the population moments equal to the sample moments. In

other words, the values 8;, ..., 8;, are solutions of the following k equations
M; = ;01 .,0k), j=12,....,k

(Bain and Engelhardt (1992))

2.2.3 The Maximum Likelihood Method

The likelihood function of the n random variables X, ..., X,, is defined to be
the joint density of n random variables, sayfy, . x, (x1,...,%n; 61, ..., 60x), Which is
considered to be a function of 6, ...,60,. In particular, if X, ..., X, is a random

sample from the density f (x; 6, ..., 8), then the likelihood function L is defined as



L=1L(64,0,,...,60,) =15, f(xi; 04, ..., 6))

The point at which the likelihood function L (or the log likelihood function In L) is a

maximum, is the solution of the following either system of k equations:

OL(01,02,..0) _

26,

(S1) 0, =1,k

01InL(61,0;,..0,)

(S2) 5

0, j=l,...k

j
(Mood and Graybill (1974))
2.3 Inverse Transform Method for Simulation from a Discrete Distribution

The algorithm of simulating a sequence of the random numbers x; of the
discrete random variables X with pmf P(X = x;) = p;, X120 p: = 1, and a cdf F(x),
where m may be finite or infinite can be described as

Step 1: Generate a random number u from uniform distribution U (0, 1).

Step 2: Generate random number x; based on

ifu<py=F(xg), then X = x,,

ifro <u<po+p =F(x), thenX = x,,

if }-”;01 pj<u< Z}-”:Opj =F(x,), thenX= x,,

To generate n random numbers x4, ..., x,, repeat Step 1 and Step 2 n times.



Chapter |11

Literature Review

3.1 Introduction

In reliability theory, many suggested continuous lifetime models are studied.
However, it is sometimes impossible or inconvenient to measure the life length of a
device, on a continuous scale. When the grouped lifetimes of individuals in some
populations refers to an integral number of cycles of some sort, it may be desirable to
treat it as a discrete random variable. Fortunately, many continuous distributions are

discretized.

A new model, called an Extended Weibull or Modified Weibull extension
(MWE) distribution is useful for modeling this type of failure rate function. This
distribution is easy to use while it can achieve even higher accuracy compared with
other models. Hence, the Extended Weibull serves is a good alternative distribution

when, needed models have bathtub-shaped failure rate.

The modified Weibull Type I (MW (1)) distribution can be used to describe
several reliability models. This distribution generalizes the Exponential, Rayleigh,

linear failure rate and Weibull distributions.

10



The modified Weibull Type Il (MW (11)) distribution will introduced as an
extension of the Weibull model. This model will consider a three-parameter

generalization of the Weibull distribution.

Two methods of discretizing the continuous distributions are discussed in the
present chapter. The modified Weibull extension (MWE) distribution, modified
Weibull Type 1 (MW(I)) distribution, modified Weibull Type I (MW(II))

distribution are discussed and their properties are presented.

3.2 Discretizing the Continuous Distributions

A continuous failure time model can be used to generate a discrete model by
introducing a grouping on the time axis. Two methods of discretizing the continuous

distributions will be explained in this section.

3.2.1 First Discretizing Method

If the underlying continuous failure time X has the survival function (sf)
S(x) = P[X = x] and time are grouped into unit interval so that the discrete
observed variable is dX = [X] , where [X] denotes the largest integer part of X, the

probability mass function of dX can be written as

P(x) = P[dX = x]

=Plx<dX<x+1]

=Sx)—-S(x+1); x=01.2,...

The probability mass function of dX can be viewed as a discrete

concentration of the probability density function of X.

11



Nakagawa and Osaki (1975) are first to use this approach. They discretized
the Weibull distribution with two parameters and studied the properties of the
discrete Weibull distribution such as the failure rate. Nakagawa (1978) defined the
discrete extreme distributions. The application to an n-unit parallel system in random
environment was shown. After that Stein and Dattero (1984) discussed a new
discrete Weibull distribution and compared it with the discrete Weibull distribution
introduced by Nakagawa and Osaki (1975). They proved that the hazard rate of the
discrete Weibull distribution is similar to that of the continuous Weibull. They also
proved that the exact lifetime distribution of a specific system and the lifetime
converge to that given by the continuous Weibull thus showing the connection
between the two distribution. Khan et al. (1989) discussed the two discrete Weibull
distributions that were introduced by Nakagawa and Osaki (1975), and Stein and
Dattero (1984). They presented the so-called proportion method to estimate the
parameters. Dilip Roy (2004) proposed a discrete Rayleigh distribution. He
deliberated on the problem of discretization of the Rayleigh distribution, to retain
resemblance with its continuous counterpart, and used the corresponding properties
of the continuous Rayleigh distribution. He studied the estimated problem of the
underlying parameter. Burr XII and Pareto distributions were considered as a
continuous lifetime model and their discrete analogues with their distributional
properties and reliability characteristics derived by Krishnah and Pundir (2009).
They discussed the maximum likelihood estimation in discrete Burr (DB (XII))
distribution and discrete Pareto (DP) distribution in detail with simulation study. Jazi,
Lia and Alamatsaz (2010) proposed and studied an analogue of the continuous
inverse Weibull distribution. They presented four methods for estimating the

parameters of the discrete inverse Weibull distribution. The discrete version of

12



Lindley distribution was introduced by Deniz et al. (2011), by discretizing the
continuous failure model of the Lindley distribution. Also, a closed form compound
discrete Lindley distribution is obtained after revising some of its properties. Finally,
Al-Dayian and Al-Huniti (2012) introduced the discrete Burr type 111 distribution as
a suitable lifetime model and developed its distributional characteristics. The
maximum likelihood and Bayes estimations are illustrated.

3.2.2 Second Discretizing Method

For any continuous random variable X on R with pdf f(x), one can define a

discrete random variable Y that has integer support on (—, ) as follows

f )
=k) = ; =0,+1,42, ..
PY =1 =i k=0,+1,42,

Kemp (1997) used this method to obtain a discrete analogue of the normal
distribution as the one that is characterized by maximum entropy, specified mean and
variance, and integer support on (—oo,0). Inusha and kozubowski (2006) derived a
discrete version of the Laplace distribution. They presented various representations
of discrete Laplace variables and discussed its properties. The maximum likelihood
and the method-of-moments estimators are obtained and their asymptotic properties
are established.

3.3 Modified Weibull Extension Distribution

Models with bathtub-shaped failure rate function are useful in reliability
analysis, and particularly in reliability-related decision-making and cost analysis. A
modified Weibull extension (MWE(a, 8, 1)) model is useful for modeling this type
of failure rate function. It can be a generalization of the Weibull distribution.

Xie et al. (2002) proposed and discussed an extended new distribution

(MWE(a, B, 1)) capable of modeling bathtub-shaped failure-rate lifetime data. This
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model can be a generalization of the Weibull distribution and it is very flexible. This
new model only contains three parameters and it is related to exponential and
Weibull distributions in an asymptotic manner.

Nadarajah (2005) derived explicit algebraic formulas for k** moment of the
distribution. The cumulative distribution function of the MWE (a, 8, A) distribution

is given by
B
F(t)=1—exp[/1a(1—exp(;) )] t>0,1>0a>03>0.

The corresponding probability density function has the form
t\P t\P t\P
f(t;/l,a,ﬁ)z/’lﬁ(;) exp[(;) +/1a(1—exp(g) >];t>0,/1>0,a,ﬂ>0.

The reliability function is

R(t) = exp [/10( (1 — exp (g)ﬁ )] .

The corresponding failure rate has the following form

=) " e [(9)]

Xie et al. (2002) studied the shape of the failure rate function and deduced
that when 8 > 1, the failure rate function is an increasing function and is a bathtub-
shaped function when g < 1.

The mean time-to-failure of the distribution is
+o0 t B
E(T) = [, exp [Aa (1 — exp (Z) )] dt.

The above integral is difficult to calculate analytically. Hence, numerical

integration is usually needed.
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The variance of the time-to-failure is

© B
Var(T) =2 f0+ t exp [Aa (1 — exp (é) )] dt — p?.
This expression has to compute numerically.

The MWE (a, 8, A) distribution related to Weibull distribution. When a = 1,
the MWE (a, 8, A) distribution reduces to the model by Chen (2000). He proposed
this model with bathtub shape or increasing failure rate function and discussed the
exact confidence intervals and exact joint confidence regions for the parameters
based on type Il censored samples. Weibull distribution is an asymptotic case of the
MWE(«a, 8, A1) distribution. This occurs when the scale parameter a becomes very
large or approaches infinity while A=2a#~1 remains constant. In this case, the MWE
(a, B, A) distribution becomes a standard two-parameter Weibull distribution. It will
be capable in handing both decreasing and increasing failure rate. This in fact is a
special case of bathtub curve. A further special case is, when g =1, is large
enough and A1~ *af~1 is a constant, the MWE(a, 8, 1) distribution reduces to the

exponential distribution with parameter A-1a# =1,

Parameter estimation is usually a difficult problem as even for two- parameter
Weibull distribution. Methods like maximum likelihood estimation will not yield a

closed form solution. Different estimation methods are used.

Xie et al. (2002) also estimated the distribution graphically. Simple graphical

estimates are obtained. When Ao = 1, the model is simplified to

a

R(t) = exp [1 _ (E)B ]
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For the estimation of the parameters a graphical method is developed. A

similar transformation to the Weibull transformation is
x =Int,
y = In{In(1 — InR(¢t))}.

If the life time data follows this model with Aa = 1, then the plot of y versus
x can be fitted with a straight line. Furthermore, g is the slope of the regression line.

The estimation of a is obtained from the y-interception, and A = 1/a . The line is
y=pFx—pflna, —o<x <ow

The three-parameter MWE(a, §,1) distribution is the general case. The
traditional Weibull plot does not yield a straight line. When t is small the first part of
the data on the Weibull plot is considered and can be observed as an approximate

estimation of the parameters.

With the transformation y = In(1 — InR(t)) and x = Int, a line can be

obtained when plotting y versus x which satisfies the equation:
y = Bx + In(Aat™F).

The slope of the regression line estimates the parameter 8. The y- intercept

equals In(1at~F).

When t is large, the Weibull transformation
\B
In[—InR(t)] = In(Aa) + In Ie(E) — 1].

For the second term, when t is large
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In {[e(é)ﬁ — 1]} =1In {I1 - e‘(i)ﬁl} e @

Since, when ¢t is large, the first term approaches zero, and the asymptotic
curve is (t/a)Pin this case. Hence, by taking another log, a straight line for large t

can be used and graphical estimates can be obtained.

Xie et al. (2002) derived the maximum likelihood estimators of the
parameters of the MWE(a, 8, A1) distribution. Let t4, ....., t; are the time-to-failure of
the k failed components from a sample consisting of n components under type Il

censoring.

The underling likelihood function is:

t

L= 21K, (g)ﬁ_l exp {¥¥, (%)ﬁ +3K  Aa <1 — e(Ei)B>

ti\ P
+(n—k)a <1 — (@) )}.

The log likelihood function is

) \B
InL = kinA + kinf +nia + (§ — D T, %+ 3l (2)

—Aa Yk  exp [(%)B] —(n—k)laexp [(%‘)ﬁ]

Equating to zero the first derivative of the log likelihood function with
respect to A, where a and f are assumed known, the maximum likelihood estimator

of the parameter A can be obtained in the form
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t

k B -1
1=k (a PN (%)ﬁ + (n— k)ae(?) - na) .

Finally, by taking the partial derivative with respect to g and a, when 4 is

assumed known, the following two equations follow

ot mt e (9 ) -t e (2 (9 ) =0

a a

=MD =y () - ast (e (8) (1- ()
w\B w\B
—(n — k) exp (;k) (1 — (;k) ) =0.

These equations are difficult to be solved analytically for g and «, and a suitable

software package can be used to solve them numerically.

Nadarajah (2005) derived the following explicit algebraic formula for the k"

moment of the modified Weibull distribution
E(X"®) =k [[x*'R(x)dx = k [ x*" ! exp[Aa(1 — exp(x/a))] dx. (3.1)

He expressed the k" moment as simple derivatives of the incomplete gamma

function.

an—l
ayn—l

EX"®) = nakexp(Aa) [(A) T (y, Aa)]. (3.2)

Here, n = k/f, for k = 1,2,3, ... where the derivative is evaluated as y — 0, and

I'(a,x) = f: t% 1 exp[—t]dt is the incomplete gamma function.

Equation (3.1) or equation (3.2) may compute the moments of the

MWE(«, B, 1) distribution. For n = 1,2,3,4, equation (3.2) compute the moments as
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E(XP) = Ei(1, 2a). (3.3)

E(x?F) = —+ +ylogl+yloga+ (1og/’1)2

2
4 (logza) +log Alog @ — AasF5(1,1,1; 2,2,2; —Aa) (34)

2n(3 3 ;2 2 m?
E(x3F) = _:®) v Ty <—+y2>log/1—<?+y2>loga

—2ylogAloga —y(log1)? — y(log@)? —log A (log a)? — (log 1)* log a

—2(log1)* — - (log @) + 24, F,(1,1,1,1; 2,2,2,2; — Aa) (3.5)

E(X*) = + 20(3)y + 2 + (2((3) +y3+ )1og,1
(2((3) +y3+ L )loga + (3)/ + )log/lloga
+ (2 +5) (og)? + (22 +Z) (log @)? + 3y log A (log @)?

+3y(log)?loga + y(log1)® + y(log a)® + log A (log a)3

+ 2 (log A)%(log a)? + (logA)3log a + i (log 1)*

+~ (log a)* — 64asF5(1,1,1,1,1;2,2,2,2,2; —Aa). (3.6)
Here,

Ei(n,x) = ff%dt is the exponential integral function.

p ) N oo (@re(ap)exk )
F; (al’"'"’ap'bl’""bq’x)_Zk=0—(b1)k...(bq)kﬁ’ is the generalized hyper

geometric function.
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y = 0.5772156649 is the Euler's constant.
c(x) = ZCI’CO=1 1/k.X1

n(x) = (1 —2"7"%¢x).
(©)r =c(c+1)..(c+ k—1) is the ascending factorial.

The formulas in equations (3.3)-(3.6) give the first four moments when g = 1, when
B = 2 it gives the moments of order 2,4,6 and 8and when £ = 3 the formulas give

moments of order 3,6,9 and 12; and, so on.
3.4 Modified Weibull Type I Distribution

Sarhan and Zaindin (2009a) presented a new distribution called Modified
Weibull Type I (MWD(I)(a, 8,1)) distribution which is a general form for some
well-known distributions such as Exponential (E(«)), Rayleigh (R(4)), linear failure
rate (LFR(a,4)) and Weibull(W(B,A)) distributions and studied its different
properties. This new distribution contains three parameters, two scale parameters a, A
and one shape parameter 8 and it has constant, increasing and decreasing hazard rate
functions which are desirable for data analysis purposes. Sarhan and Zaindin (2009b)
dealt with the problem of estimating the parameters of this distribution based on

Type Il censored data.

Zaindin (2010) estimated the unknown parameters of the MW (1) (a,,1)
distribution based on grouped data and censored data. The point and asymptotic
confidence of the unknown parameters are estimated by the maximum likelihood

method.

20



Gasmi and Berzig (2011) developed the confidence estimation for the
parameters of MW (1) (a, 8, 1) distribution based on type | censored samples with,

and without replacement.

The cumulative distribution function of the MW (1) (a, B, A) distribution is
F(x) =1-exp(—ax —2xF),x >0,A> 0,0, > 0,a + 1> 0.

The probability density function is

foaB,2) = (a+ApxPexp{—ax — 2xF},x > 0,a,8,2 >0 .

The MW (1) (a, 8, A) distribution generalizes the LFR(a, A1) distribution at g = 2,
the W(g, 4) distribution at @ = 0, the R(A) distribution at « = 0, 8 = 2 and the E(a)

distribution at 1 = 0.
The hazard function of the MW () (a, 8, A) distribution is
h(x) = a + ApxP~1.

The hazard function will be constant when g =1 and when g <1 it will be a

decreasing function, while it will be an increasing function when g > 1.

The quantile x, of the MW (1) (a, B, 1) distribution is a real solution of
Axg + axg +1In(1—¢q) = 0.

This equation has no closed form solution in x,. So, a numerical technique

such as Newton-Raphson method will be used to get the quantile. When g = 0.5, the
median can be obtained.

Sarhan and Zaindin (2009a) derived the quantile x,, for the special cases:
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1. When g = 2 the MW (I) (a, 8, 4) distribution reduces to linear failure rate

1

LFR (a, 4) distribution with x, = —{—a +/a? = 42In(T — @) }.
2. When a = 0, the MW (I) (a, B, ) distribution becomes Weibull W (3, 1)
1/B
distribution with x, = {—% +1n(1 — q)} .

3. When a=0, g =2, the MW(l)(a, B,4) distribution becomes Rayleigh

R(A) distribution with x, = \/{% +In(1 — q)} :

4. When A =0, the MW(I)(a, B, A) distribution reduces to exponential E(a)

_In(1-q)

distribution with x, =
a

5. When g =1, MW(I)(a, 8, 1) distribution reduces exponential to E([ + [1)

_ In(/-0)

distribution with [1- = ~ )
(O+0)

The mode of the MW (1) ([, [J, [1) distribution is as a solution of the following

nonlinear equation in(J.

@ + A2B2x2B~D 4 2a2BxP~1 — AB(B — 1)xP~2 = 0.

The k" moment of X, say u'j is given by

o (DI[TEB+k+1) T(iB+k+pB)
i=0 [ aiBtk + Aﬁ G iB+k+B fOT' a,l >0
=1 )
e ,{,;731 fora=0,1A>0
U(ZZD fora>0,1=0

The measures of skewness a*and kurtosis A* of the MW (1) (a, B, 1)
distribution are calculated for different values of 8 when a =1 and A = 0.5. It is
observed that a* and A first increase and then start decreasing. In addition, a*takes

negative values when 8 becomes large.
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The moment generating function takes the form

w (D[ alp+1) L((+1)B)
(Zi=0 il [(a_t)iﬁ+1 + A,B (a—t)(i“)ﬁ

— ] 22,t(=
M(t) = % fora=01>0

— fora>0,1=0,a>t

fora,A>0,a>t

The maximum likelihood estimates of the unknown parameters a, 8 and A

are derived based on complete sample. The likelihood function is

L= ?=1(a + A,Bxiﬁ_l)exp{—axi - Axlﬁ}
The log likelihood function
InL = Z?zlln(a + Aﬁxiﬁ_l) —aylt X — AZ?zlxiﬁ :
Computing the first partial derivative of the log likelihood function with

respect to , B and A and setting the results equal zeros, gives

dlnlL 1

n n
= i1 7y — 2i=1Xi = 0,
da Zl—l(a+wxf D
onL _wn _ BT o £ =0
oA Sl (aeapafr) S ’
dlnlL n xiﬁ'l(1+ﬁln(xi)) _

omL _yn X TP MAD) n B N =
9B _lel (a+lﬁx;.8_1) l=1xi ln(xl) 0.

The solution of this system is not possible in a closed form. So, the solution is
obtained numerically.

The approximate confidence intervals of the parameters based on the
asymptotic distributions of their maximum likelihood estimators are derived. The
second partial derivatives of the log likelihood function for the observed information

matrix of a, § and A are

9%InL
da?

1

= —111 = an —1
=1 (a+/1ﬁx§‘8_1))2
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921InL n AxFVapIn))

==l = dizy z
dadf t (a+/1/3xl.(B_1))
oL _ o _ 57 pxtP~V)
daor ~ BT AEL (G piB-)

(B-1) 2 B-1

321InlL x; (aﬁln (xp)+2aIn(xy)—Ax; ) B

=—I,=AY"L AY x? In?(x;),
a2 22 21—1 (a+/1ﬁi(/3—1))2 + Zl_l i ( l)
92InL n axPVa4pIn0x))

+ ¥ xiﬁ In(x;),

9807 = —123 = Zi:l (a+)[ﬁx,(B_1))2

Il _ . _gn g2 F~V
EYY 33 i=1 (a+)LBi(/3—1))2'

The observed information matrix is given by
111 112 113
A= 1 I Lz
131 132 133
So that the Variance-Covariance matrix may be approximated as

Vii. Viz Vi i1 Lz I3
V=V Vay Vozs|=\1lz1 Iz Iz3

V31 V32 V33 131 132 133

-1

The asymptotic distribution of the maximum likelihood estimators is given by

a Viin. Viz Vi
~N <ﬂ>, Va1 Voy Va3
A V31 Vi Vi3

The matrix V involves the parameters a, 8 and A. Replacing the parameters

_ (3.7)

(

by their corresponding maximum likelihood estimators to estimate V, gives

> T
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>

11 h2 L3
V=111 I Iy

131 132 133

>

Here, f;; = I;; when (&, B, A)replaces(a, B, 4). By using equation (3.7), the

approximate 100(1 —y)% confidence intervals for «,B,1 are determined,

respectively, as & + zoy/ Vi1, f £ zoy/Vap, and 1 + zo+/Vs3.
2 2 2

Here, z, is the upper 6" percentile of the standard normal distribution.

Based on Type Il censored data Sarhan and Zaindin (2009b) dealt with the
problem of estimating the parameters of the MW (I) (a,B,4) distribution. The
maximum likelihood estimators were used to derive the point and interval estimates
of the parameters.

The likelihood function of x is

L(x) = 5 Tiea(@ + 28x] ") expl=aTy (1) — 2T, (B},
Here,

T,(B) = (n—r)xf + X7 xf.

The log-likelihood function takes the form

InL(x) = € + iy In(a + A7) = aTy (1) - ATy (B).
The value € = Inn! — In(n — r)! is a constant.

Calculating the first partial derivatives of the log likelihood with respect to a, 5,1

and equating each equation to zero gives the following system of nonlinear

equations:
0lnL r 1 _
da =1aiapxf? n(1) =0,
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dInL pxf

_Nr _P*x _

EY) - Zi:l a+/1,8xi.8_1 Tl(,B) - 0!

oL _ g 27 a+pIng) _ATI(B) = 0
ap — TEEL g E
Here,

T{(B)=(n—- r)xf In(x,) + 27 xiﬁ In(x;).

These equations are solved numerically.

The approximate confidence intervals of the parameters based on the
asymptotic distributions of the maximum likelihood estimators of the parameters
a,,A based on type Il censored data are derived. For the observed information

matrix of a,f,A they found the following second partial derivatives of the log

likelihood function

9%InL _ A =3 1
- T 411 — i=1-, 5 -2
da? ' (a+)LBx;.B 1)
2 p-1
0%InL _ — r (A+B1In(x))x;
0adf —Aqp = lZi=1W,
@ (a+lﬁxi )
921nL — 4 or Bxip_l
= —A13 = =17 o2
9ad2 ' (a+lﬁxiﬁ 1)
9%InL _ _ . xiﬁ_l(aﬁ lnz(xi)+2a1n(xi)—/1xf_1)
aﬂz - _A22 - aAlel B—1 2
(a+)L[s’xi )
0’Ink _ _ , , (+BIn(x))xf? TR
— T 423 = =1 —\2 1 y
0poA ' (a+/1ﬁxi.8 1)
921InlL _ A _ - Blez(ﬁ 1)
- 33 — =1 2
oa2 ' (a+/1[>’x2.8 1)
Here,

T/'(B) = (n— r)xiﬁ In?(x;) + X7 xiﬁ In?(x;).
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The observed information matrix is
All A12 A13
A=|(A1 Ay Az |.
A31 A32 A33
The approximate variance-covariance matrix is
V11 V12 V13
V=|(Var Vo Vo3 |=47"
V31 V32 V33

It is known that the asymptotic distribution of the parameters a, 8 and A is given by

@ ay Vii Viz Vis
B|~N <B>, Vo Vaz Vo3
yi A \V3 Vap Va3

Since V involves the parameters a, f and A, the parameters will be replaced

by the corresponding maximum likelihood estimators in order to estimate V as

17'11 Via Vis
V= 21 Vaz Va3
V3i Vi Vis

Here, 4;; = A;; when (&, 5, 1) replaces(a, §,2). The approximate 100(1 — 8)%
confidence intervals for a, B, 1 are @ + zey/Vy1 , f + 264/ Vo ,and 1+ 2o/ Va5 .
2 2 2

Here, zy is the upper 8" percentile of the standard normal distribution.

Sarhan and Zaindin (2009b) also derived the least square estimators (LSES)
of the three parameters «, 8, A. Given the observed lifetimes x4, x5, ..., x,- in a type 1l
censored sample from the MW (1) (a, B8, A) distribution. The least squares estimates
of the parameters a, 8,1 denoted &z, Br Az can be obtained by minimizing the

quantity Q with respect to a, 8, A, where
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2
Q = Z?:l{yi —ax; — le} .
Here, y; = —In S, (x;) and S, (x;) is the empirical estimate of the survivor function
S(x) = exp (—ax — AxF)

at the observation x;,i = 1,2, ..., m, given by S, (x;) = i_ro‘s.

Solving the following non-linear equations gives @, fz, Ax

Y1 YiXi —aXi- 1x —AYi 1xﬁ+1 0, (3.8)
r 2B _
h1%x lex llex =0, (3.9)
Tyl - A1) 2 26 =0. 3.10
=1 yl n(x) aZl 1X n(xl) Zl 1X H(X) ( . )

The two equations (3.8) and (3.9) give

1
Sy ST -3 P STy

é?R’ = 2 ’
2 +1
Tioqix lﬁzlr 1x1_(21r1 lB )

PIRD Y R TC 0 i VT v e f
R = 28 B+1
i=1%; 1=1xi2_( =1 %; )

Substituting @, A into equation (3.10) and solving it numerically gives Bx.

Zaindin (2010) derived the mean time-to-failure of the MW (1) («, 8, A) distribution
in the form:

MITF = L 32, C2 <%)i r (ﬂ)

,8% i! By B

He derived the estimate of the unknown parameters of the MW () (a,f,4)

distribution based on grouped and censored data. First, letting t = t4, t,, ..., t;, Where
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t; < t, < - <t denote the predetermined inspection times with ¢, representing
the completion time of the test. Second, letting t, = 0 and t;,; = c. Third, for
i=1,2,..,k denoting by n; the number of failures recorded in the time interval (t;,_4, t;)
and by n;,.; the number of censored units that have not failed by the end of the test.
The maximum likelihood function is

L = CII}o[P{tioy < T < t3M[PLT > )]+

Here,

C = |s a constant,

Hi‘*f n!
P{t;y <T < t;} =F(t;) — F(ti-1),
P{T >t} =1—F(ty).
Therefore, the likelihood function is

Nk+1 ny
L=C [exp{—atk — Atf}] f 1 [exp{ ati_1 — Atf_l} - exp{—atl- — Atiﬁ}]

The log likelihood function is

InL =InC —ny4q [atk + Atf]nkﬂ + Y n;ln [exp {—ati_l - Atlfg_l} —exp {—ati - Atiﬁ}]

0 if i=0
Let Ai = e_ati_’uiﬁ lfl =1,..k
1 ifi=k+1

The first partial derivatives of the log likelihood function with respect to a, B, A are

dlnlL k Aj_qti_1—Ait;

= —n t;, — ron ——

da k+1%k Zl—l 1 Aj_1—A; ’
oL _ /'lt In(t,) — 3 Ai_1t? An(_)-aitfamey)

ap k+1 k =11 Aj_1—A; !
B B
dlnL - —n t'B _ vk n Aj_qt;_ —Ait;
£y k+1%k i=1"" Ai_q1—A; '
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dlnL dlnlL dlnlL
=0, = 0'
ap oA

The solution of the equatlons = 0 is not possible in a

closed form. So, the maximum likelihood estimators are obtained numerically.

The approximate confidence intervals of the parameters based on the
asymptotic distributions of the maximum likelihood estimators of the parameters are

constructed.

The following are the second partial derivatives of the log likelihood function

I, = 6 InL _ — k AiAi_q(ti—ti_1)?
11 oa? i=1 (A Al 1)2 '
_OmL ek Ak (eF P -l e -l e+ )
12 = Ba08 i=17 (Ai—Ai_1)? '
_ 9?mL Koo Ahi (P =Py el 1)
137 dadr (=171 (A—Aj_1)? :
a ll’lL B 2 B
Ly =22 = AT ny {AA el 2 (o) (1 - 2l )

+A A1t () (1 = 2ef ) + 224,41t ¢ | In(e) Ineiy)

+AZE In(t) — AL tl 02 ()} (A — Ai1)?,

9%InL

by = S = — TiaandAida 26t T (In(tir) + In()

+AiAi_1ti-8_1 ln(ti—l) (1 - Atig—l)
it e (12 A2 e

—AZ tF In(ti_)}/ (A — Ai-1)?,
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2
Low = 0%InL _ g n AiAi—l(ti'B_ti'B_l)
33 — alz - i=1"'" (Al_Al—l)z

The approximate 100(1 —v)% two sided confidence intervals for «,f, 4 are,

respectively@ + zv\/I;;! , B+ zvy/I7 , and A+ zvy/I7} , where, zv is the upper
2 2 2 2

v th . . - -

(E) percentile of the standard normal distribution.

Gasmi and Berzig (2011) developed the estimation of the MW (I) (a, 8, 1)
distribution based on Type | censored samples without and with replacements. In the
case of type I censoring without replacement N times are independently observed

and the observation of the i" item (I=1,..., N) is censored at time Tj.

The likelihood function based on type | censored sample is

L= { ?zl(a + A,Bxiﬁ_l)exp(—axi — Axiﬁ)} [exp(—aT — ATB)]N_n .
The log likelihood function is

InL=Y", [ln(a + Aﬁxiﬁ_1> —ax; — Axiﬁ] + (N —n)(—aT — ATF) .

Calculating the first partial derivatives of the log likelihood function with respect to

a,f,A and equating each equation to zero give the following system of nonlinear

equations:
1
LW — iz — (N—=n)T =0, (3.11)
B-1
Bx; B _
?=1W— im1x; — (N — n)TF =0, (3.12)

P 1+ pinxy)

YN — X% %P Inx; = A(N —=n)TFInT = 0. (3.13)

AXiz
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The equations (3.11) - (3.13) are solved numerically in «, 8, A.

Gasmi and Berzig (2011) obtained the estimation of the Fisher information
matrix and asymptotic confidence bounds. They found the second partial derivatives

of the log likelihood function as:

9%2InL _ @n 1
- 2 i=1 1\ 2
doa (a+lﬁxi.8 1)
22InL _ <n pxPt
daar ~ “i=1 B-1\%’
@ (a+)lﬁxl. )
92InL _ @n Axt '(1+Blnx)
- - i=1 _1\2 !
dadp (a+lﬁxi.8 1)
321nlL _ on ﬁzxiz(ﬁ_l)
- 2 T 4i=1 _N\2?
04 (a+lﬁxi.8 1)
9%InL axP 1+ pInx;
— =_yn #ﬁzl) n P Inx + (N-n)TBInT,
apaA i=1 51 i=1%; i
(a+)LBxi )
9%InL P (@p In? x;+2aln x;—AxPh) B2
~ g = —A X ——+ AXY x; In®x;

(a+lﬁxiﬁ_1)2
+A(N —n)TP In?T

The observed information matrix A is

9%InL 9%1InL 9%1InlL

da? dadp dadr )i )i )i

9%InL 9%InL 9%21nL 1 12 13
A=|— - > - =11 Iz I ).

dAda ap apoA I I I

d%InL d%InL d9%InL 31 732 733

dyda dA0p A2

The variance-covariance matrix is
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Viin. V2 Vi3
V=|Var Vo Voz|=4"1

Va1 Vi Vi3
The asymptotic confidence intervals of the parameters o, f and A are & + zvy/Vy; ,
2

N — A - . th ]
B iz;N/Vz ,and A+ zvy V35 . Here, z% is the upper (g) percentile of the

2

standard normal distribution.

Gasmi and Berzig (2011) improved the confidence regions for small samples

based on the likelihood ratio. The log-likelihood ratio

q =2{InL(x;& 6,1) —InL(x;a,B,A)} converges in-distribution to a central y2-
distribution with 3 degrees of freedom. They developed the confidence estimation for
the parameters of the MW (1) («, 8, 1) distribution based on type | censored samples
without replacement. They observed N independent items, after each failure the item
is immediately replaced by a new one and the observation continued up to the time

T;, i=1,..,N. The likelihood function for the renewal process is
d;
L=T11", {szl(a + Aﬁxg.) exp(—axij - Axfj)} exp(—aRl- — AR;B).

Here, R, =T; — Z;'iilxij is the rest-time of the observation, d; is the number of
failures of the i‘" realization of the process and x; = (x;1, X;2, ., Xiq;) denotes the

distance between failures. The log-likelihood function is
InL =YX, 2% In(ax + Apxl) — T, 204, In(axy; + ABxl) — T, (aR; — ARD).

The maximum likelihood estimators are obtained by using a suitable numerical

method to solve the following system of non linear equations:
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d; _
12] 1a+)Lﬁx[f 1 Iivzlzj=1x iR =0,
pxf? @
121 1 +/1,8]ﬁ 1 Iiv=12j=1x5— ?’leiﬁ:()’
i (1+,81nxu)
A2 12] 1]a+lT A% 121 =1 ljlnxl] lZ’LlRiﬁlnRi:o.
ij

In this case, Gasmi and Berzig (2011) derived the observed Fisher information

matrix for the parameters with the second partial derivatives of the log-likelihood

function as:

9%InL 1
- = 12 T

oa (a+/1ﬁxi3j 1)

B-1

%InL _ @n Zdi Bx;; ~(1+B Inx;)
- - i=1 =1 _1\2 !

dadp J (a+lﬁxiﬁj 1)

9%InL _ N di Bxiﬁj_l
- — Li=1Z4ij=1, __ g2’

dadld ] (a+/1ﬁxfj 1)

p-1 2 p- 1

321nlL ] (afIn xij+2alnxij—lxij

- ap2 __AZ 12 +AZ 121 1 Uln xl]+

(a+lﬁxiﬁj_1)2

AYN, RPIn?R,,

621nL U (1+[s’lnxl]) 8
Y 121 =1 (a+)L[>’xﬁ 1) 12} 1%ij lnxU +Z 1R; InR;,
22InL _ @ 5 p2x2(F~1)
- 2 Li=14j=1, __ g_1\2'
94 J (a+/1BxiBj 1)

The observed information matrix A is
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9%InL 9%InL 9%1nL
/_ a2 dadp aaaz\ L, L, Iy
A_' _621nL _azlnL _azlnL i
- dBoa FYE apar | ( )
0%InlL 0%InL azlnL/

" 9r0a 0108 922

The approximate variance-covariance matrix is

Vii. Viz Vi3
V=|Va Vop Voz|=A"".

V3 1 V3 2 V3 3

The asymptotic confidence intervals of the parameters o, B and A are given by
&+ zoA[Viy , B + 20V, ,and A + zvy/Vs5 . Here, z, is the upper vt" percentile of
2 2 2

the standard normal distribution.

In this case, the confidence regions for small samples were constructed based on the
likelihood ratio and with the log-likelinood ratio ¢ =2{InL(x;&,5,1)—
InL(x; a,B,2)} that converges in distribution to a central y2- distribution with 3

degrees of freedom.
3.5 Modified Weibull Type Il Distribution

The modified Weibull Type I (MW (Il) (a,B,4)) distribution has been
recently introduced by Lai et al. (2003) as an extension of the Weibull model. The
model can be considered as a useful three-parameter generalization of the Weibull
distribution. The bathtub-shaped hazard rate function was proposed and they derived
the model as a limiting case of the Beta integrated model and have both the Weibull

distribution and Type | extreme value distribution as special cases.

Lai et al. (2003) estimated the parameters based on Weibull probability paper

(WPP) plot and they studied the model characterization based on WPP plot.
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Ng (2005) studied the estimation of parameters of the MW (Il) (a,f, 1)
distribution based on a progressively type Il censored sample and derived the
likelihood equations and the maximum likelihood estimators. The model's
parameters based on least squares fit of a multiple linear regression on WPP plot
(LSRE) are compared with the maximum likelihood estimators via Monet Carlo
simulation. The observed Fisher information matrix as, well as the asymptotic
variance-covariance matrix of the maximum likelihood estimators, were derived. He
constructed approximate confidence intervals for the parameters based on standard
normal approximation to the asymptotic distribution of the maximum likelihood

estimation and the logarithmic transformed maximum likelihood estimation.

In (2008) Perdona et al. investigated the properties of the MW (I1) («, 8, 1)
distribution, a three-parameter distribution which allows U-shaped hazard to be
accommodated. They presented the inference of the parameters based on both
complete and censored samples. Different parameterizations as well as interval

estimation for the parameters of this model were discussed.

Alwasel (2009) studied the competing risk model in the presence of
incomplete and censored data when the causes of failures obey the MW (1) («, 8, 1)
distribution. The maximum likelihood estimators of different parameters were

derived. Also, asymptotic two-sided confidence intervals were obtained.

The cumulative distribution function of the MW (Il) (a, B, 1) distribution is
F(x)=1- exp[—lxﬁe“x],x >0,a>0,=201>0.
The probability density function is

o a,B,1) = A8 + ax)xP~exp(ax) exp[—/lxﬁe“x].
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The hazard function is
h(x) = 2(B + ax)xP~exp(ax).

The shape of the hazard function h(x) depends only on B in x#~1 because

the remaining two parameters have no influence.

When g > 1, h(x) is increasing in X, h(0) =0if § >1; h(0) =AB if B =1 and

h(x) - o0 as x — oo,

When 0 < 8 < 1, the hazard function initially decreases and then increases with X,

implying a bathtub shape. For it A(x) » wasx - 0,and h(x) > ©asx - o .

The derivative of the hazard function h(x) intersects the x-axis only once, at x* for

x > 0. The hazard function h(x) is decreasing for x < x*, and increasing for x >

x*, where x* = (/B — B)/a.

The MW (I) (a, B, A) distribution is related to the two-parameter W (B, 1)
distribution for « = 0. When f =2 and = 0 , it reduces to the R (A) distribution.
When £ =0, the model reduces to the extreme-value Type I EXT (I) (a, A)

distribution.

Lai et al. (2003) discussed the problem of determining whether a given data

set can be adequately modeled by MW (1) (a, 8, A) distribution by WPP plot.

As for any traditional lifetime distribution the model’s parameters must be
estimated based on actual data. Lai et al. (2003) estimated the parameters based on

WPP plot, the method of percentile, and the maximum likelihood method.

The likelihood function is easy to be derived. For complete data the log likelihood

function is
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InL=nhha+Y - InB+ax)+B-1DInQL x)+aXiox;— A2~ (xiﬁe“xi).

Calculating the first partial derivatives of the log likelihood function with respect to

a, 8, A and equating each derivative to zero gives the following equations:

dlnL _ «n 1 n n B+l _ax;\ _
da - i=1 B+0¥Xi + 2i=1 xl - /1( i=1 xi e L) = 0,

dlnL 1 '
W — ?:1 From + ]n(Z?zl xi) - A( ?=1 xiﬁeaxz In Xl') =0,
olnL

n n B ax; _
” —}_Zi=1xie i=0.

From the third equation it follows that

A= n( ?=1(xfe“xi))_1.

The remaining two equations need to be solved numerically to get &, 3.

Ng (2005) estimated the parameters of the MW (1) (a, 8, A) distribution by
the WPP plot and the maximum likelihood method based on a progressively type 11
censored sample. He first discussed the problem of the point estimation of the

models parameters based on least square regression on WPP plot.

The likelihood function based on a progressively type Il censored sample is

L=CII™, A8 + axi:m:n)xf,;:ln exp[axl-:m:n — AxPt e®Ximn(R; + 1)].

im:n

Here, X1.mm < - < Xm.m:n are the observed values of such a progressively type 11

censored sample,

C=Tl(n—1—R1)(n—2—R1—R2)(n—m+1—R1—'--—Rm_1)and

(R4, - .., Ry,) is the progressively scheme.
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The log likelihood function is given by

InL=k+mlnA+ Y% In(B+ aximn) + (B — D)X InXpmn
+a Yt Ximen — A Die 1xlmn eimn(R; + 1).

Here, K is a constant.

Calculating the first partial derivatives of the log likelihood function with respect to
each of the parameters a, 8, A and equating derivative equations to zero gives the

following system of nonlinear equations:

dlnL _ $m Ximm m B+1 o Wiz _
da  “i=1 B+axXimm + i=1 Xizmm — AZL 1Ximmn € l'm'n(Ri + 1) =0,

6lnL B+1 . —
ap :nlﬁ’ﬂxxlmn +2 1lnxlm" /121 1Ximm € axl'm'n(Ri +1) =0,
dlnL m

—m = R W xl e @imn(R; 4+ 1) = 0.

From the third equation, follows

m

A= m B AXimn (R;+1)
i=1 Ximm® " (Ri+1)

The first and second equations will be solved numerically to get 3, &.

For the observed Fisher information matrix Ng (2005) derived the following second

partial derivatives of the log likelihood function:

92InL X2 B+2 .

l1 = =5 = 2 Gt T A2 X € R+ 1)
d21nL x2

112 =T dadp - ?;1 (ﬁ+al9.cr:n + AZL 1xlmn(lnxlmn) eaxlmn(R + 1)
92%InL B+1 .

113 = — el = Zl 1xlmn axt.m.n(Ri + 1)’
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d%InL 1 .
I = — gz ﬁlm +aXi, xfm:n(ln Ximen) 2 €¥¥imn (R, + 1),
d%InL .
123 = - aﬁa/’{ = ‘{ilxlﬁmn(ln ‘xi:m:n) eaxl:m:n(Ri + 1) ’
_9%2InL _ m
l3=—%m =%

The observed Fisher information matrix is

111 112 113
A= I Is).

131 132 133
The matrix A can be inverted to obtain a local estimate of the asymptotic variance-
covariance matrix of the maximum likelihood estimators

Vii. Viz Vis
V=A1=V,y Vy Vo3l

V3 1 V3 2 V3 3

The asymptotic confidence intervals for the parameters a, 3, A are given respectively,

by @+ zv\/Viy , B+2zv\Vyy , and A+ zv\/Vs3 , Where, z, is the upper vt"
2 2

percentile of the standard normal distribution.
In (2008) Perdona et al. derived the log likelihood function based on censored

samples by considering a sample of independent random variablesX;,X,, ..., X,

associated with survival times, and ¢4, ¢, ..., ¢, associated with censored times.

Let T; = min (x;, ¢;) and let §; = I(x; < c¢;) be the censoring indicator variable. The

obtained log likelihood function can be written in the form:

InL =Y, 6 [log(d) +log(B + at;) + (B — D log(t) + at]] —AX, tPeati

L

The first partial derivatives of the parameters «, 8, 1 are
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alnL _[ n o it
da l=1,8+at

St] AT, Pt eaty

alnL_[
ap ~ l~i= 1,8+ t;

+ 3" Silogt] A, tPeatilng,

dlnL . n 6 n at:
EY) - l'=17_ l_ltiﬁe L

By equating these equations to zero, the parameters can be obtained by solving the

resulting equations numerically.

Inference regarding v' = (a, 8, 4) can be based on the properties of the maximum

likelihood estimation for large samples as ~N (v, A~1(v)).

Here, A(v) is the Fisher information matrix, which is estimated by A=1(9) when v is

replaced by the maximum likelihood estimator 7.

The observed Fisher information matrix for &, 8, A is given by

5it? _ 5 .
| SRS+ At 0)e™ie? TRy 5+ Ayt D™ty Tiy ui(tis 0)e ™t |
S; . .
>, t‘ + Au; (t; Detit; i=1A_i2 + Ay (t;; 2)e*t o Aug(t; Vet
. . 5;
l Zi=1 w;(t;; 0)e™it; i=1 Aw; (t;; De'it; =172 -

Here u, (x;; b) = xiﬁ InP x;forb=0,1,2,..and A; = + ax; withi=1,...,n

Alwasel (2009) derived the maximum likelihood function based on incomplete and

censored data. He assumed that there are two causes of failures and assumptions:

1. The random vectors (X;;, X,;), i = 1,...,n are n independent and identically
distributed.
2. The random variables X;; and X,; are independent for all i =1,...,n and

X; = min(Xy;, X3;)
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3. Ther.v. X;; has MW(II) (a;, B;, A;) distribution, j=1,2, i=1,2,..,n.

4. In the first m observations, observe the failure times and also causes of
failure. Whereas for the successive (n-m) observations, observe only the
failure times and not the causes of failure, that is the cause of failure is
unknown. In the successive (N-n) observations, the systems are still alive at

the end the project periods. The observed data will be:

(XlJ 51)' (XZi 62)! ey (Xm' Sm)i (Xm+1!*)' ey (Xnﬁ*)' (Xn+1*ﬁ*)' (LY (XN*'*)-

Here, (X,8) means the system has failed at time x due to cause o, and
(o #,%)

means the system has tested until time x without failing (censored data). This
set is denoted by Q which can be categorized as a union of three disjoint
classes Q1 , Q, and Q3, where Q; represents the set of data when the cause of
system failure is known, while Q, denotes the set of observation when the
cause of system’s failure is unknown and Qg3 denotes the set of censored

observations.

Further, the set Q; can be divided into two disjoint subsets of observation:
Q1 and Qq,, where Qg represents the set of all observations when the failure
of the system is due to the cause j, j=1,2. Also assume that | Qi |= i | Qjj|= rij ,

m=ri=ru -, | Qzlz r, = n-m and | Q3 |: 3 =N-n.

5. The lifetimes are from the same population as in the complete data. That is,
the population remains unchanged irrespective of the cause of failure.

6. Also, mand n are predetermined.

The likelihood function for the observed data is
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(xl; 51)’ T (Xm; 6771)’ (xm+1;*)' Ly (xn;*)' (xn+1*;*), ey (xN*;*)

The maximum likelihood function based on incomplete and censored data is
L= exp{ YiaAuix e“i"i}]—[f-:l/l;j :
[xe0,; {(ﬁj + ajxl-)xiﬁj_le“fxi} .
Hxieﬂz{(ﬁ1 + a1xi)xiﬁ1_1ea1xi + (B2 + azxi)xiﬁz_leazxi}-
The log likelihood function is
InL =33, {rj In}; — 4 YL 1x “Jxl}
+ Zle ineglj{ln([)’j + ajxl-) + (,Bj —1)Inx; + ajxi}
+ Yxieq, ln{(ﬁﬁ + a1xi)xiﬁl_1€“1xi + (B, + azxi)xfz_leazxi} .
Equating the first partial derivatives with respect to «;, 8;, A; to zero gives

Z?=1 6i1[1+(ﬁj+ajxi) In xi]xfj_lea]'xi

Bi=1 q.x:
2 i~ ajx
Yio(Bjrajxpx;” e T

ineﬂz

X
-1 I.V_ x,ﬁlx. e 4 ) [ i + X'] =0
l Zl—l i 1 ZXLEQ]_J Bl+alxi i f

Z?=1 5i1[1+(,8j+ajxl-) In xi]xiﬁj_leajxi

Bi—1 gq.x;
2 j aix
ijl(ﬁj+ajxi)xl. e J7

ZX,:EQZ

-4 N 1xﬁl Inx;e®™i +y ey [_
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Here, &;; = {(1) if ]O:Wl

This system of nonlinear equations has no closed form solution, so numerical
technique is required. To get the MLEs of the parameters a4, ay, 81, 52,41 and A,.
Alwasel (2009) developed the relative risk rate due to two causes 1 and 2 in a closed
form. The relative risk rates, m; due to cause 1 and m, due to cause 2 are given

respectively, by
0 LBiaix
1y = P[Xy < Xol] = 1= 24 [ (By + agx)xPr-te @ Ejmaix e gy

o _ Bi ax
m, = P[Xy; < Xyl=1-my =44 fo (B1 + a1X)xﬁ1_1ea1x Tjoyajxe”) dx

The above integrals have no closed solution. So numerical integration
technique is required to get m; and m,. The maximum likelihood estimation of the
relative risk ; and 7, can be obtained by replacing the unknown parameters 4;,
and a;,j = 1,2 by their maximum likelihood estimators.

Some special cases can be reached from the above results as follows:

1. For the exponential distributions case, by setting §; = 1and a; = 0,j = 1,2

1, = 2 T, = 22
17 244, 27 44,

2. For the Weibull distributions case with the same shape parameters S by
setting ; =, =B, anda; =0

M= g =2
L7 2044, 727 A40,

which, is the same as for the exponential case.

The asymptotic distribution of the maximum likelihood estimator
D = (@1, @y, 1, B2, A1, 45) 18 No(v, A1 (1)).

The elements of the matrix A=*(9) = [I;;()], i,j = 1,2, ...,6, where
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A-1(D) = [_ 621nL]v=ﬁ

617,:617]'
The asymptotic confidence intervals of v is ¥ + zv,/A~1(D), where z, is the upper
2

v*" percentile of the standard normal distribution.
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Chapter IV

Discretizing Continuous Distributions

4.1 Introduction

An important aspect of lifetime analysis is to find a lifetime distribution that
can adequately describe the ageing behavior of the device concerned. Most of the
lifetimes are continuous in nature. Hence, many continuous life distributions do exist
in literature. On the other hand, discrete failure data are arising in several common
situations. For example, the life length of a copier would be the total number of
copies it produces. Using the discretizing approach, the discrete form of the general
class of continuous distributions can obtained. For the discretized class, the reliability
measures and the characteristics will be derived.

The discrete modified Weibull extension (DMWE), the discrete modified
Weibull Type I (DMW (1)), and discrete modified Weibull Type Il (DMWD (II))
distributions will be introduced in this Chapter. The distributional properties of these

distributions will be discussed.
4.2 Discretizing General Class of Continuous Distributions

We consider a general class of continuous distributions and generate a

discrete lifetime distribution based on a continuous distribution.

Let X is a positive random variable having a cumulative distribution function
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F(x)=1—e ®) (4.1)
where g(x) = g(x; a,8),g(0) = 0.
The corresponding survival function is

Sx)=PX >x)
=e 29 (4.2)
Using the first discretizing method, introduced in Section 3.2 of Chapter 111, then for

every positive integer x the pmf of the discretized class is

Px)=PX =x)=Sx) —S(x+1) = e 29X _ g=Agx+1)

Equivalently, for 8 = e=*,1 > 0, the pmf P(x) is

P(x) = 090 — ggx+1), (4.3)
4.2.1 Properties of the Discretized Class of Continuous Distributions

The discretized general class of continuous distribution has the following

properties:
e The cumulative distribution function is
Fi(x) =1—69&+1) (4.4)
Proof:
Fi(x) = Xt=o P(0)
= Y% o[09® — g9+D] since g(0) = zero

= [gg(O) + 090 4. 4 gg(x)] - [gg(l) +09@ 4 ... 4 gg(x+1)]
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=1—99&+D),
e The survival function is
S (x) = g9+, (4.5)
Proof:
Si(x) =P(X >x)
= 2109 — 99¢+D]
= @9x+1)
e The failure rate is
r(x) =1—99&+D-9(x), (4.6)

Proof:

g9x) _gg(x+1)
ri(x) = 2 (090 —gg(t+1)]

99(x) _gg(x+1)
09x)

=1—99&x+D-g(x)

e The second of failure rate function, defined for every positive integer X is

SRF;(x) =[g(x) —g(x+ 1] In6. 4.7

Proof:

S1(x-1)
S1(x)

SRF;(x) =1In [
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g9(x)
=In [esﬂxﬂ)]

= 1n[gg(x)—g(x+1)]

=[gx) —g(x+1)]nb.

e The residual reliability function at time x, defined for all i € N* is

R1(i|x) = QIGx+i+1)—g(x+1) (4.8)
Proof:
. _ S1(x+D)
Ry (i) = =057
g9 (x+i+1)
= 09(x+1)

— Hg(x+i+1)—g(x+1)l

e The cumulative hazard function, defined for every positive integer X, is
Hy(x) = x — Y= gIt+-9(®, (4.9)

Proof:

Hi(x) =Xz ()

_wox 09 _gg(t+1)

T 4t=1 ¥, [09D—gg(i+D)]

g9 _gg(t+1))

= Xt=1 (W
= (1 — g9CE+D-9®)
=x—-Y5, g9t+1)—-g(t)

e The discretized general class of continuous distributions has an increasing failure

rate (IFR), since the equivalent conditions IFR1 and IFR2 are satisfied, where
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IFR1: {r;(x)},=1 IS an increasing sequence.

IFR2:Foralli € N*,{R,(i]|x)},=1 IS a decreasing sequence in X.

Proof of IFR1: Let g(x) be an increasing continuous function in x. For 0 < 6 < 1,

o) {Hg(x)} is a decreasing sequence for all x > 1. Hence, for x; < x, we have

=> 99(x1) > gI(x2)

=> x1+1< x2+1

=> 901+l 5 gg(x2+1)

g9(x1+1) g9(x2+1)
99(x1) > 09(x2)

99(x1+1) 99 (x2+1)
99(x1) <1l-= 99(2)

=>1-
=> 11(x1) < 11(x2).

Proof of IFR2: Let g(x) be an increasing continuous function on x. Since 0 < 6 <
1, then for x; < x,, we have
= xt+1l<x+1

=> gI(x1t1) 5 gg(x2+1)
=>xti+l1< x,+i+1

:> 9g(x1+i+1) > 9g(x2+i+1)

@9(x1+i+1) 99 (x2+i+1)
99(x1+1) 09(x2+1)

=> Ry(i|x1) < Ry(i]x).
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e The discrete general class of continuous distributions has an increasing failure
rate in average (IFRA), since the following equivalent conditions IFRAL and

IFRA2 are satisfied, where

IFRAL: {(S1 (x))l/ x}x>1 is a decreasing sequence.

IFRA2: {HlT(x)} is an increasing sequence.
x21

Proof of IFRA1L: Let g(x) be an increasing continuous function of x. For 0 < 8 <
1, {#9™} is a decreasing sequence for all x > 1. Hence, for x; < x, we have

=> x1+1< x2+1

=> 901+l 5 gg(x2+1)
= {gg(X1+1)}1/x1 > {gg(xz+1)}1/x2

=> {8 ()} 1 > {8, (xxx) }H/*2.

Proof of IFRA2: Let g(x) be an increasing continuous function of x. For 0 < 6 <
1, {99(")} is a decreasing sequence for all x > 1. For t; < t, and x; < x, we have

=> g9t1) 5 ga(t2)

=> 99t > 9+ sincet; +1<t, +1

g9(t1+1) g9(t2+1)
09(t1) > 09(t2)

g9(t1+1) g9(t2+1)
YN <- 99(t2)

s _yu 09OV gy, 92D L1 1
=> — Y= gean < T Lty=1 gawy + SiNCE — - < —
g9(t1+1) g9(t2+1)

— _i Xy Y- 7 _i Xz T
=> x12t1=1 09(t1) < xZthzl 09(t2)

_ 1 xq Q9(t1+1) 1 wx, g9(t2+1)
=>1 xlztl=1 09(t1) <1 xzztzzl 99(t2)
H,(x Hq{(x
=> 1(x1) < 1( 2).
X1 X2
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Another proof:
From the definition of the cumulative hazard function, it can be seen that it is an

increasing function but not a probability, where it measures the total amount of risk

that has been accumulated up to time x (Mario et. al. (2008)) and for HlT(x) it is also

increasing.

e The r'" moment of the discretized general class is

EX") =32, (x" — (x —1)")I™ | g(0) = zero . (4.10)
Proof:
E(X") = X3Zox"p(x)

=2 x"(09%) — gale+1))y
= Yre0 XTI — Y=o xTIx+D)
= [Orgg(o) + 1799 4 21992 4 3rg9B) 4 ]
_[Orgg(l) + 17092 4 21993 4 3rg9(4) L ]
=09W 4 (2" —1)89@ + (3" — 27993 + (4" —37)9IW 4 ...
= T (7= (x = DI,
e The moment generating function of the discretized general class is
My(t) =1+ 32, (e — e®xD8)g9™) | g(0) = zero. (4.11)
Proof:
My(t) = E(e™) = X3 oe™ P(x)

=¥ et (9 — gg(x+1)y

52



= 31 etx gIt) _ g0 ot gglx+D)
= [e°69© + £tgIW) 4 £2t99(@) 4 £3t9a(3) 4 ... ]
_[906;9(1) + etp9@ 4 o2tga(3) 4 p3tgg(4) 4 ]
=090 4 (et —1)09W 4 (e2t — e1)g9@ 4 ...
= 1432, (Xt — e&x-D)gato)

e The probability generating function of the discretized general class is

G0 =1+ (t— 1) X2, t¥71 9% | g(0) = zero.

Proof:
G () = E(tX) = 2o t* P(x)

=2 t* (9% — ggix+1))
=Yoo tF09%) — 3 [t¥ 9t
— [99(0) + tgg(l) + t29g(2) + t39g(3) + t49g(4) + ]

_[99(1) + tg9) + t299(3) + 3994 + t499() + ]

=1+609D(t -1) +09Pt(t — 1) + 992 (t — 1) + -

=1+ (t—-1)3y=, txD eIt

4.2.2 Estimation of Parameters of the Discretized General Class

(4.12)

The parameters of the three distributions DMWE («, 8,6), DMW (1) («, S, 8),

and DMW (1) (a, B, 6) will be estimated by the Proportion method, the Moments
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method, and the maximum likelihood method. For each method, the parameters will
be estimated in four cases..
(1) The Proportion Method

P(x;a,B,0) = 09%) — 99+D) 'where g(x) = g(x; a, B)
Let y be the number of the zero’s in the observed sample, and put
P(0;a,B,6) = 09 — 99 =2 since g(0) = 0

Y g =2 (4.13)

n

Let z be the number of the one’s in the observed sample, and put
P(1;a,B,0) = g9 _ g9(2) — % (4.14)
Let w be the number of the two’s in the observed sample, and put

P(2;a,B,0) =99 — 993 == (4.15)

n

This system of nonlinear equations is solved analytically.
(2) The Moments Method
Equating the sampling moments to the population moments, we can obtain the

following system of nonlinear equations

o L 7r(ga) _ gatxi+D) = Lyn 7 —
= l = [ ] y &y I .
»2ox"(0 0 ) ==Y, x", forr=1,2,3 (4.16)

n

This system also is solved analytically.
(3) The Maximum likelihood Method

The likelihood function L and the log likelihood function In L are respectively,
L= l'[?:l(gg(xi) — gg(xi+1)) ,
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InL = Z?zlln(gg(xi) _ gg(xi+1)).

We have to solve the following system

dlnL

oa |a=a,5=ﬁ,9=§ - O\|

dlnL

o5 la=ap=po=0 = 0$ (4.17)

We solved this system analytically.
4.3 Discrete Modified Weibull Extension Distribution

In the present section, the first discretizing method introduced in Section 3.2 of

Chapter 111, will be applied to the modified Weibull distribution. That is

900 = (e@" - 1). (4.18)

The survival function of the MWE(«a, 8, A,) distribution in the continuous case is

$Go = M)

X
- a(e (E)B —1)
e

X B
_gle@ ) (4.19)

Here, 8 = e *1%,0 < 6 < 1, by using Equation (4.3).

The probability mass function of the DMWE (a, 8, 8) distribution is

xX+1

B g
P(x) =671 [96(5) _ gel'@) l x=0,1,2, .. (4.20)
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E[x,9,4,n.nrs?]|n.rs - T i
5&,3 J5,0403) g 4L

2.6,0.549
plx ]n_z

Lo

T
-

S

—fx-
p———f=
p———f
p—
e
3

1

Figure 4.1 The pmf of DMWE distrbution at different parameters' values.

To prove that P(x) is a probability mass function it should be

(i) P(x) = 0, trivial,sincea>0,>0,0<6<1

(i) T2 POO=1 .

Proof:
P x+1\B
S2 0P = 52,0710°% —gele) )
B x+1\B
=91 Z;o=0[9e(5) _ Be(T) ]

1)»3

B 2\B
— 9—1{l09(E) + He(E + Be(E) + l

1,8 2\B 3\B
_lge@) 4o g +,,,_l}

B
— 0—199(%)

=610 =1.

Substituting Equation (4.18) into Equation (4.4) yields the cumulative distribution

function of the DMWE(q, 8, 8) distribution in the form

x+1\B
Fi(x) =1- gela) -1 (4.21)

Thus F;(x) equals the cdf F(x) of the MWE (a,8,A,) distribution calculated at

(x+1) in the continuous case. That is, F; (x) = F(x + 1).
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. . 1\B L (1)3 .
Lim,_, F;(x) = 0. Since, for large a,f > 1,(;) be small this implies e\a/ is
close to one then e2#[1-11 s close to one .

oo\ B
Lim,_, F;(x) = 1 Since, Ge(“) =e ®=0.

]. T T T

|
0.8 .
0.6 .
Fifx,9,4,0.06%
T 0.4 .
0.2 _,_li .
D | | |
0 2 4 f 8 10
X
1 T T T T
0.9 -
0.6- -
Filx,3,5,0.403
T 0.4 .
0.4 -
D | 1 | |
0 2 4 f & 10
x
1 T T
02f -
061 .
Filx,2,6,0549)
I 04f i
0zf -
|:| 1 1
0 1 2 3 4

X

Figure 4.2 The cdf of DMWE distrdutions at different parameters' walues

4.3.1 Some Reliability Measures for the DMWE Distribution

Substituting Equation (4.18) into Equation (4.5) yields the survival function of the

DMWE (e, 8, 8) distribution in the form
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B
(F) -1

S,(x) = 0° (4.22)

This is the same as the survival function in the continuous case but calculated at

(x +1).

1

51x,9,4,0.067)0 50
e 0&F
21(x,3,5,0.403)

six2 6054804
02

1]

1] 2 4 f g 10

Figute 43 The survival function of DMWE distritutions at differend p arameters' vaues

Substituting Equation (4.18) into Equation (4.6) yields the failure rate function of the

DMWE(«, B, 8) distribution in the form

e _ @
rnx)=1-06¢*" —¢% (4.23)
I:IE T T T T
ri(x,1.5,0.350.639
- 0.4 i
rlfx, 1,014,067 \b\%
(205045 02 = & - - " " N
a .I ------------ [T o o
0 2 4 5 B 10

Figure 4.4 The failure rate fimection of DWWE distribution at different pararne ters' values

Substituting Equation (4.18) into Equation (4.7) yields the second failure rate

function of the DMWE («, 8, 6) distribution in the form
x\B x+1\B
SRF,(x) = (e(E) — e(T) )ln@. (4.24)

Substituting Equation (4.18) into Equation (4.8) yields the residual reliability

function of the DMWE(«, 3, 8) distribution, defined for all i € N* in the form
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a a

211 _e(x_ﬂ)ﬂl

o
Ry(ilx) = 9[ (4.25)

Substituting Equation (4.18) into Equation (4.9) yields the cumulative hazard
function of the DMWE((«, 8, 8) distribution in the form
sl (52 |-exs| (&)

Hy(x) = x — Xt=1 0 (4.26)

The DMWE(e, B, 8) distribution has an increasing failure rate (IFR), since the two

equivalent conditions are satisfied

ol =22 e[ )]

IFR1:<1—-86 is an increasing sequence.

ool ool |

x=1

IFR2: Foralli e N*,< 60 is a decreasing sequence.

The DMWE(a, 5,0) distribution has also an increasing failure rate in average

(IFRA), since the two equivalent conditions are satisfied

IFRA1L:

x+1\B 1/x
<9exp[(7) ]_1> } is a decreasing sequence.
x=1

G A OF|

x21

IFRA2: <1 —i ) 9[ is an increasing sequence.

4.3.2 Properties of the DMWE Distribution

Substituting Equation (4.18) into Equation (4.10) yields the r** moments about zero

of the DMWE(a, B, 6) distribution in the form
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\B
W= E(XT) = 07155, (" — (x — 1))@ | 4.27)

The first four moments about zero follows from Equation (4.27) in the form

®°
W=EX) =071y%,0°%

x\B
1w, = E(X?) = 0-1 3%, (2x — 1)8¢@ |

x\B
wh=EX3) = 0713%,(3x% — 3x + 1)96(“) ,

B
= EXH) =0"13% (4x3 — 6x% + 4x — 1)93(“) :

When g = 1, the above four formulae become

@ )
@

w =EX)=06"1%5,06°
uy =E(X?) =071 ¥52,(2x — 1)6°
ppy = E(X®) = 071 37, (3x% — 3x + 1)6°
iy = E(X*) = 67 52, (4% — 622 + 4x — 1)6°7 J

® > (4.28)

The median of the DMWE(«, £, 8) distribution is

m=a(In (1 - l‘;‘—;))l/ﬁ ~1. (4.29)

Proof:

. m+1 B
P(x <m) =175 [1 _g1ge” e’ l >

N |-

yields (m—“)B 1

— —g7tge ¢ > -3

yields (m—“)ﬁ

N 9—196 a <

N | =

. m+1. P
yields ge(T)

<?
2
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yields m_+15
S et ln@Slng

yields (m_“)ﬁ (1n9—ln2)
— e a <|——
- Inf

yields m+1 B
n

() s (1- )

yie_>msm3a(ln(1—1‘;‘—2))1/ﬁ—1

o 1 . In2\\1/8
Similarly, for P(X = m) = > we obtainm < a (ln (1 B ﬁ)) -1

The mode of the DMWE («, 8, 6) distribution can be located graphically. The mode
values corresponding to (a,5,0) = (9, 4, 0.067), (3, 5, 0.403), (2, 6, 0.549) are,

respectively D =6, 2, 1. This is illustrated in Figure 4.1.
Substituting Equation (4.18) into Equation (4.11) yields the moment generating
function of the DMWE («a, 8, 6) distribution in the form
®"
My(t) = E(e®™) =14+ 07132 (e¥t — e®-Dt)ge (4.30)

Differentiating Equation (4.30) r times with respect to t, we obtain

x\B
M) = 07152 (x7e — (x — 1)re<x-1>f)ee(“) =12, .. (4.31)

The first four moments can be also obtained from Equation (4.31) whent=0and r =

1,2,3,4 in the form
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x\B
Wy = My(®leo = 07152, 059

\B
iy = MY (Olomo = 071 32, (2x — 1)0° |

x\B
iy = MP (Olemg = 07 T84 (36 — 3x + 105 |

x\B
wy = MP ()] mo = 0712, (4x% — 632 + 4x — 1)96’(“) .

When g = 1, the above formulae become:

Wy = MY(Dlmy = 0132, 059,

iy = MY (©)lomo = -1 55, (2% — 110,

= MO (Olco = 07 52,352 — 3% + 1),

‘u_éll‘ = M)((4)(t)|t=0 — 9—1 Z;O=1(4_x3 _ 6x2 + 4x — 1)96(5).

Substituting Equation (4.18) into Equation (4.12) yields the probability generating

function of the DMWE («a, 3, 8) distribution in the form

x\B
GO =EE) =1+ -1 133, ™D 98(“) : (4.32)
Differentiation of the both sides of Equation (4.32) with respect to t, gives the first

and second derivatives in the form

x\B
G'(®) =071 N5 t* D (xt — (x — 1))93(5) . (4.33)
PN
G =071t (e — 1)t — (x — 1)]93(5) . (4.34)

Substituting t=1 into Equations (4.33) and (4.34) gives the first and second factorial

moments in the form
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B
p =EX) =G'1x(1) =073, ee(a) :

X8
ta = E(XX = 1)) = 6"y (1) = 071 52, 2(x — 1)6°@

The second moment and the variance of X are

x\B
E(X?) = Hp) + Mz = 07 1yx ,(2x — 1)66(“) ) (4.35)

2

x\B
— <9—1z;°=196(5> ) . (4.36)

x\B
Var(X) = 071 3%, (2x — 1)93(5)

4.3.3 Estimation of the Parameters of the DMWE Distribution

The parameters of DMWE («, 8, 8) distribution will be estimated by the proportion
method, the moments method and the maximum likelihood method.
(1) The Proportion Method

Case I: known parameters « and £ and unknown parameter 6.

The unknown parameter 0 has a proportion estimator in exact solution, where

o= (i _X)(e@’*_l) | s

0\A 1WA
P(O; Q, ﬂ,e) =91 Iee(ﬁ) _ Be(E) l — %

, 1B
R le @ l =2 (4.38)

, B
yields [1 ~ 03(%) _1l y
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. B
yields 96(%) g ¥
n

; B
ﬂ(e(%) —1>1n6 =ln(1—%)

Case I1: known parameter £ and unknown parameters « and 6.

Let z be the number of the one’s in the sample
B B
n

vietds (&)o@

zZ
=6=. (4.39)
Solving Equations (4.38) and (4.39) numerically gives the proportion estimators a*
and 6" of the parameters a and 6.

Case I11: known Parameter a and unknown parameters 8 and 6.

Solving Equations (4.38) and (4.39) numerically gives the proportion estimators

B*, 0" of the parameters 8 and 6.
Case 1V: unknown parameters a, 3, 6 .

Let w be the number of the two’s in the sample
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2\B 3\ B
P(2;a,6,B) = g1 Iee(a) . He(a) ] 2%

. B B
yiewss & .6

=0~ (4.40)

Solving the Equations (4.38)-(4.40) numerically, gives the proportion estimators

a*,B*, 0" of the parameters a, 3, 6.
(2) The Moments Method
Case I: known parameters a and 8 and unknown parameter 6.

Equating the first population moment to the first sample moment gives the equation

x\B x+1)\B
%) _ ee(T) l -1 ?=1xi . (4.41)

Y ox071 lee
Solving the Equation (4.41) numerically gives the method-of-moments estimator
of the parameter 6.

Case I1: known parameter § and unknown parameters a and .

Equating the second population moment to the second sample moment gives

0B x+1\B
Zoo 2 9_1 ee(ﬁ) _ 93(%1) _ l 2 4.42
x=0%X =L ai=1Xi - (4.42)

Solving the Equations (4.41) and (4.42) numerically gives the method-of-moments
estimators & and @ of the parameters «, 6.

Case I11: known parameter a and unknown parameters 8 and 6.

Solving the Equations (4.41) and (4.42) numerically gives the method-of-moments

estimators 8 and @ of the parameters £3, 6.
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Case 1V: unknown parameters a, 3, 6.

Equating the third population moment to the third sample moment gives

x)B

@ L]
Tox® 07109 — 0 T | = ~F xF. (4.43)

Solving the Equations (4.41) - (4.43) numerically gives the method-of-moments
estimators &, 8, @ of the parameters a, 3, 6.
(3) The Maximum likelihood Method

The likelihood function and the log likelihood function of the DMWE (a,pf,6)

distribution are

e 1>ﬁ],

L=6" gdm%)—ee
g <ﬂ>’*]

mLz—nm9+2£ﬂnFJﬁ-—w

Case I: known parameters a and £ and unknown parameter 6.

-t — — : =0. (4.44)

Solving the Equation (4.44) analytically gives the maximum likelihood estimator 8

of the parameter 6.

Case I1: known parameter £ is and unknown parameters « and 6.
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« ) _, (4.45)

Solving the Equations (4.44) and (4.45) analytically gives the maximum likelihood

estimators &, & of the parameters a, 6.

Case I11: known parameter a is and unknown parameters 8 and 6.

dlnL yields
ap |(X=a,ﬁ=B g=9g =V —
(ﬁ)ﬁ xi\B (xz_“)ﬁ xj+1\F P
R R - )
i=1 RN RN = 0. (4.46)
s

Solving the Equations (4.44) and (4.46) analytically gives the maximum likelihood

estimators 3, 8 of the parameters 3, 6.
Case IV: unknown parameters a, 3, 6.

Solving the Equations (4.44) - (4.46) analytically gives the maximum likelihood

estimators &, §, 8 of the parameters a, 3, 6.
4.3.4 Special Distributions from DMWE Distribution

Many discretized distributions follow as special cases from DMWE
distribution. Examples of such distributions are the discretized model of Chen
(2000), discrete Weibull and discrete exponential distributions.

As one of our new results, the discretized model of Chen distribution handled

in detail. The remaining existing discretized distributions referred to shortly.
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The DMWE (8, a, B) distribution reduces to the model by Chen (2000) when a = 1.

The pmf of the discrete model of Chen is

X B X B
P(x;B,6) = 671[0°" — 9™ ], x=0,1,2,.... (4.47)
gx) = exf-1, (4.48)
Dﬁ T T T T
£|:x,EI 74 074 le 4 | |
5(:{,15,0.?41) &
plx025 074102 T. i
II i i
|:| [ I, ak, ik, . W -\.
0 2 4 é 2 10

Figire 4.5 The pmf of DChen distribution at dif ferent parameters' walues.

Substituting Equation (4.48) into Equation (4.4) yields the cumulative distribution of
the DChen (B, 6) distribution in the form

ex+D)B _y

F,(x)=1-0

0.4 .
Fi(x1.50.74)
T

0.4 T

0.9 .

Fix,0.740.741
I 0.4 .

04 | | | |
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DS T T T T

0788,
0.7k -
Fi(x,0.25,0.741) 0.6} .
I
0.5k =
0403,
04 | | | |
0 2 4 é 8 10
13 % RUR

Figure 4.6 The cdf of DChen distributions at different parameters' walues,

Substituting Equation (4.48) into Equation (4.5) yields the survival function of the

DChen (B, 8) distribution in the form

e+ )P _
Si(x) =6° L
I:IE T T T

f1(x,0.74,0.741) nal 4
a(x,1.5,0.741)

(3,025,074 0.2 7

|:| b 2 Ll A ' 2
4 6 g 10

X

Figure 4.7 The survival function of DChen distribntions at different parameters' wvalues

Substituting Equation (4.48) into Equation (4.6) yields the failure rate function of the

DChen (B, 8) distribution in the form

xﬁ

X B
r(x) =1- """ e

1

rifx,0.15,012)080 -
Ay

r1lx,0.55,0.41) 081 }
r(x0501) 4 1
02 - —
I:I 1 1 1 1
0 2 4 6 8 10

Figure 42 The failure rate function of DChen distribution at different parameters' values
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Substituting Equation (4.48) into Equation (4.7) yields the second failure rate

function of the DChen (8, 8) distribution in the form
SRF, = (exﬁ — e(x“)ﬁ) Iné.

Substituting Equation (4.48) into Equation (4.8) yields the residual reliability

function of the DChen (8, 8) distribution, defined for all i € N* in the form

Qe(x+1+i)5_e(x+1)ﬁ

Ry (ilx) = ,x=0,1,..

Substituting Equation (4.48) into Equation (4.9) yields the cumulative hazard

function of the DChen (3, 8) distribution in the form

+1)B_ B
Hi(x) =x—Y}.,0° e,

The DChen (B,6) distribution has an increasing failure rate (IFR), since the

following equivalent conditions are satisfied

( +1)»3_ B . . .
IFR1: {1 — et et } is an increasing sequence.
x=1

is a decreasing sequence.

He(x+1+i)3_e(x+1)ﬁ’}
xz21

IFR2: Foralli € N*{

The DChen (B, 8) distribution has an increasing failure rate in average (IFRA), since

the following equivalent conditions are satisfied

xnB_\* . .
IFRAL: {(99( = ‘1) } is a decreasing sequence.
x=1

. x e+ DP _ P . . ]
IFRA2: 11 —27%.,6 IS an increasing sequence.
xz1
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Substituting Equation (4.48) into Equation (4.10) yields the rt* moment about zero

of the DChen (3, 8) distribution in the form

1= E(XT) = 32, (" — (x — 1)) 1.

The first four moments about zero are, respectively
xB
.u = 9_1 Z?{o:l 98 1
xB
py =071 ¥, (2x —1)6°"
xﬁ
us = 071¥% (3x% —3x +1)0¢

xﬁ
uy =071Y2 (4x3 — 6x% + 4x — 1)6° .

The median of the DChen (8, ) distribution is obtained from Equation (4.30) when

a = 1, in the form

m=(n(1-22))"" _4

The mode of the DChen (3, 6) distribution can be obtained graphically by plotting
the pmf for different sets of values of the parameters. Figure 4.5 shows the mode D =
0,1,0. When (B,6) =(0.74, 0.741), (1.5, 0.741), (0.25, 0.741), respectively.

Substituting Equation (4.48) into Equation (4.11) yields the moment generating

function of the DChen (8, 8) distribution in the form

xB
My(t) = E(e™*) =1+ 07132 (e — e Dt)ge™ .
Differentiating the mgf M, (t) r times with respect to t gives the r** moment of the

DChen (B, 8) distribution in the form
P
= MO Olemo = 071 Ty (x7e™ — (x — Dre™ D)9,
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From this equation, we can obtain the first four moments of the DChen (B, 0)

distribution by simply substituting the values r =1, 2, 3, 4.
o ’ _ pn-1voo exB

py = My(O)]e=g = 07" 2721 0°
! " -1 y'o0 exﬁ

py = My (O)]i=0 = 07" 2321 (2x — 1)6 )
[ 3) — -1\ 2 exﬁ

p3 = My () |e=0 = 07" X5=1(3x° — 3x + 1)O°

xB
iy = MP () ]pep = 071 T2, (4x% — 6x% + 4x — 1)6°" .

Substituting Equation (4.48) into Equation (4.12) yields the probability generating

function of the DChen (3, 8) distribution in the form

xB
G = EX) =1+ (t— 1O 132, t&-D ge™

Differentiation of the both sides of the above equation with respect to t, gives the

first and second derivatives in the form
xﬁ
G'ix(®) =013 tF D (xt —x +1)0°" .
xB
G () = 071X (x — Dt (xt — x +2)0°7 .
At t=1, these equations yields the first and second factorial moments in the form
l; —1 yoo exﬁ
U =G [X](l) =07 Y5=10 :
" —1 oo exﬁ
Hiz) = G"[x) (1) = 207 XL (x — 1)6° .
The mean, second moment and the variance of the DChen (g, 6) distribution are

oo xB
u= 9_12x=196 )
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xB
E(X?) =071 E3L,(2x - DO,

2

Var(x) = 971 £, (2x - Do — (97155, 057 ) .
The parameters of the DChen (B, 8) distribution will be estimated by:
(1) The Proportion Method

Case I: known parameter £ and unknown parameter 6.

For known parameter 3, the parameter 0 will have the proportion estimator

o= (1=

n

Proof: Let y be the number of the zero’s in the sample

B B
P(0;0,8) =071 [0°”" — e | =2

X o-1[0 — p°'] =2

n

yields 1— 96_1 _ y
n

Solving Equation (4.50) in @ gives the proportion estimator 6 in the form

in(1-2)

. _\-1
yleldse* _ e( oD ) _ (1 _X)(e 1) .
n

Case I1: unknown parameters and 6 .

Let z be the number of the one’s in the sample
, _a-1[pge®F _ Le@F] _z
P(1;6,8) =076 pe”"| =2

yields g-1 [9e _ 98(2)[3] _z
n
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Solving the Equations (4.50) and (4.51) gives the proportion estimators §*, 6*.
(2) The Moments Method
Case I: known parameter 8 and unknown parameter 6.

Equating the first population moment to the first sample moment gives the equation
-1 v exﬁ 1on
0~ Y0 = ~Xi=1%i - (4.52)

Solving the Equation (4.52) numerically yields the moment estimator 8 of the

parameter 6.
Case I1: unknown parameters £, 6.

Equating the second population moment to the second sample moment gives

1

-1 v P
07 Xro(2x — 1o = " X (4.53)

Solving the Equations (4.52) and (4.53) gives the moments estimators 3,6 of the

parameters g, 6.
(3) The Maximum likelihood Method

The likelihood and the log likelihood functions of the DChen (3, 8) distribution are,

B ern)P
L — ‘Ir:'l=19—1 (9@( l) _ He( l+1) ),

X; B X; B
InL=-nln6+Y" In <9e( " _ 99( i+1) >

Case I: known parameter 8 and unknown parameter .

d1InL _ yields
o0 lp=po=6 =0
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e(xi)ﬁ_1> B

—n e(xi)ﬁ_g( ) el oy

o T =0. 4.54
e Zl_l ee(xl)ﬁ_ee(xl+1)ﬁ ( )

Solving the Equation (4.54) gives the maximum likelihood estimator & of the

parameter 6.

Case I1: unknown parameters 6, .

dlnlL yields
lp=pe=8 = 0—

gel)” (e+1)”

.e(xi)ﬁ.(xi)ﬁ.ln(xi)—ee .e(xi+1)ﬁ.(xi+1)3.ln(xi+1) _
i=1 -

pel)’ _peleirn)’

0. (4.55)

Solving the Equations (4.54) and (4.55) analytically gives the maximum likelihood
estimators f, @ of the parameters 3, 6.

Other special cases that result in other discretized probability distribution do
exist. For example, the DMWE (a, 8, 8) distribution reduces to the discrete Weibull

DW (B, 6) distribution when the scale parameter a becomes very large or approaches

infinity. This gives the survival function S, (x) = 6%+’ which corresponds to the
discrete Weibull distribution with two parameters 3, 6.
(Nakagawa and Osaki (1975))

Another special case of interest follows when f = 1 and the scale parameter
a becomes very large or approaches infinity. In this case the DMWE («, S, 0)
distribution reduces to the discrete exponential distribution with parameter 6, with

survival function S; (x) = 6**1,8 = e~*. This is referred as DE (0) distribution.
4.4 Discrete Modified Weibull Type I Distribution

Applying the first discretizing method, introduced in Section 3.2 of Chapter Ill, to
the general class of continuous distributions by putting
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glx) =ax+xf a= % (4.56)

into Equation (4.2) yields the survival function of the MW (1) (a4, 5, 1) distribution

as
S(x) = 9+xF g = e g = % (4.57)
By using Equation (4.3), so the pmf of the DMW (1) (a, B, 8) distribution is

P(x) = g+ _ galetDre+n)f -y — 012 (4.58)

I:IE T T T T

(x.1.136 4.0803) 08 .
lgl:x,ﬂ.j 1 0a07) 04
.25 0,15 0203
plx [

0 2 4 f 2 10

Figure 4 9 The pmf of DLW T distrbution at different paramet ers' walues.
To prove that P(x) is a probability mass function it should be
()P(x) = 0, trivial,since0 <8 < l,a>0andf >0
(i) X5 P(x) =1,
Proof:

Yir=o P(x) =230 [9“x+xﬁ — ga(X+1)+(x+1)ﬁ]

— (90 + 0a+1 + 90_’+2 + 90_’+3 + __.)
_(9a+1 _|_9a+2 + 0a+3 + _._)

=0 =0 =1,
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Substituting Equation (4.56) into Equation (4.4) gives the cumulative distribution

function of the DMW (1) («, B, 6) distribution in the form
Fl(x) =1- 9a(x+1)+(x+1)/3l (4.59)

This is the cdf of the MW(I) (a,8,4) distribution calculated at (x + 1) in the

continuous case. That is F; (x) = F(x + 1).
lim, o+ Fy(x) =1 — 02@+©@F =1 _1 =,

limy,-Fi(x) =1-0=1—-e""=1.

1 I—I—'—4 T T
0.9 -
0.5 -
Filx.0.51,0.607
T 0.7 i
0.6 -
Di | | | |
0 2 4 é 8 10
X
]. 1 T T T
0.5 -

Filx,1.1364,0.3080.6 -
T

0.4 .

0.3 1 1 1 1

D? T T T T
0.é -

0.5
F1(x,0.25,0.15,0.203)
I 0.4

0.3
0z
1]

Figure 410 The cdf of DLA(T) distributions at different parameters walues.
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4.4.1 Some Reliability Measures of the DMW (1) Distribution

Substituting Equation (4.56) into Equation (4.5) gives the survival function of the

DMW (1) (a, B, 6) distribution in the form

S, (x) = g+ +(x+1)F (4.60)

which is the same as the survival function in the continuous case at (x + 1).

0.3 T T T T

51 1.136,4,0.803) 0.6
oo
Sx0.5,1,0607) .l

21 0.25,0.15, 0803
Wx0.25,0.15, :Iu.z-

0 2 4 [ g 10

a

Figure 4.11 The sarvival fure ion of DWW distributions at different pararaeters’ values

Substituting Equation (4.56) into Equation (4.6) gives the failure rate function of the

DMW (1) (a, B, 6) distribution in the form

r(x) = 1 — ge+E+Df—xF (4.61)

1 T T T T

ri(x,1.3330.5,0.1230.9F - 7
AAA AN
n(x0.505017) gk .

r1(x,0.5,0.15,0.05 e
o7F T e

0.6 | | | |

Figure 4.12 The failure rate function of DM W(I) distribution at different parameters' values

Substituting Equation (4.56) into Equation (4.7) gives the second failure rate function

of the DMW (1) (a, B, 8) distribution in the form

SRF,(x) = [xﬁ —a—(x+ 1)’3] Iné. (4.62)

78



Substituting Equation (4.56) into Equation (4.8) gives the residual reliability function

of the DMW (1) (e, B, 8) distribution in the form
R1(i|x) — 9ia+(x+i+1)ﬁ—(x+1)/3. (4.63)

Substituting Equation (4.56) into Equation (4.9) gives the cumulative hazard function

of the DMW (1) (e, B, 8) distribution in the form
Hy(x) = x — B, 9+ @0~/ (4.64)

The DMW (1) («, B, 0) distribution has an increasing failure rate (IFR), since the

following equivalent conditions are satisfied

IFR1: {1 - 9“+(x+1)ﬁ‘xﬁ} is an increasing sequence.

x21

IFR2: Forall i € N* {Hi““x*"“)ﬁ‘(x“)/g} is a decreasing sequence.
x=1

Also, the DMW (1) (a, B, 8) distribution has an increasing failure rate in average

(IFRA), since the following equivalent conditions are satisfied

1/x
IFRAL: {(9“("+1)+("+1)B ) } is a decreasing sequence.

x=1

IFRA2: {1 - iZ’{zl 9“+(t+1)3‘tﬁ}x>1 is an increasing sequence.

4.4.2 Properties of the DMW Type I Distribution

Substituting Equation (4.56) into Equation (4.10) yields the r** moment about zero

of the DMW (1) (a, B, 8) distribution in the form

we=EQXT) = Y2, (x" — (x — D), (4.65)
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The first four moments about zero of the DMW (I) (a, 8, 6) distribution follows

directly from Equation (4.65) in the form

.“1 =¥, 9ax+x/3 \
Wy = Y2, (2x — 1) gex+xr

us = Yo ,(3x% —3x + 1)gax+xﬁ

y = Yo (4x3 — 6x% + 4x — 1)9ax+xB

(4.66)

Some moments, central moments, skewness, and kurtosis are evaluated at different

values of the parameters.

The median of the DMW (1) («, B, 8) distribution can be determined by solving the

equation

a(m+1) + (m+ DF + 2 = 0. (4.67)
Proof:

P(X<m)> %

yields 1

31— 9a(m+1)+(m+1)'8 >

2

yields pa(m+1)+mi1)f 1

2

jeld
JLf(o:(m+ 1)+ (m+ 1F)no< ln%

yields ln(l)
—am+1D+m+1DF < an

yields
—>a(m+1)+(m+1)ﬁ+:2—ZSO.

Similarly, when P(X > m) < % follows the relation

a(m+1)+(m+1)ﬁ+$—220.
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The median of the DMW (1) («,(,0) distribution can be obtained by solving
equation (4.67). For selected values of the parameters («, 8,0) = (1.365, 1, 0.864)

the medianism = 1.

The mode D of the DMW (1) (a, 8, 8) distribution can be located graphically. The
mode values corresponding to (a,,6) = (1.136, 4, 0.803), (0.5, 1, 0.607), (0.25,

0.15, 0.803) are respectively, D =1, 0, 0. This is illustrated in Figure (4.9).

Substituting Equation (4.56) into Equation (4.11) gives the moment generating

function of the DMW (1) («, B, 6) distribution in the form

My(t) = 1+ 32, (et — eC-Dt)gax+al, (4.68)
Differentiating both sides of Equation (4.68) r times with respect to t gives

MO (1) = 32, (x7e™ — (x — Dre@=Dr)gax+xl =12 (4.69)

Substitutingt=0and r = 1, 2, 3, 4, into Equation (4.69) gives the first four moments

of the DMW (1) (a, B, 8) distribution in the form

My = My (0,0 = By 677,

Hy = MY (D)), = Bgea (2x — 1) 07+,

iy = MP (), = T51(3x7 = 3x + 1o+,

= MP (), = T2, (4x3 — 6x2 + 4x — 1)g+’
When S = 1, the above calculated moments take the form

nu':,l = M),((t)ltzo = .?60219(a+1)x ’
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'ué = ),f,(t)h:o = Z?:l(zx - 1) 9(a+1)x )
r_ 3 _ V' 2 _ (a+1)x
py = My (t)),_, = Xx=1(B3x* —3x + 1)6 :
o =MP ()2, = T, (4x3 — 637 + 4x — 1)9(@+ DY,

Substituting Equation (4.56) into Equation (4.12) gives the probability generating

function of the DMW (1) (a, B, 6) distribution in the form
G (8) = 1+ (¢t — 1) ¥, t&D gax+xf (4.70)

Calculating the first and second derivatives of the pgf Gpx(t) at t=1 gives the first

and second factorial moments of the DMW (1) (a, 8, 6) distribution in the form
, o B
U = G [X](l) = Dr=1 AR

" o0 B
U =G [X](l) =2 %=1 (x — 1) 9%+,

The mean, second moment, and variance of the DMW (1) (a, 8, ) distribution are

respectively, given by
E(X) = ppy = By 095+,
E(X?) = ppy +up) = 23z (2x — 1) gra+al
Var(X) = pupy + ppz) — (#[1])2
=32 (2x — 1) gxa+xf _ ( o 9xa+xﬁ)2 . (4.71)

4.4.3 Estimation of the Parameters of the DMW (I) Distribution

The parameters a, 3,6 of the DMW (1) distribution will be estimated by three

methods of estimation.
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(1) The Proportion Method
Case I: known parameters a, f and unknown parameter 6.

The proportion estimator of 8 has the form

g = (1 B X)(a'+1)‘1.

n

Proof: Let y be the number of the zero’s in the sample

P(0;a, B,6) = [ea(0)+(0)ﬁ _ ea(0+1)+(0+1)3] _ %

yields [90 _ 9a+1] _y
n

(4.72)

yields (1_gat1] =2
n

ield.
TS @+ Dne =1n(1-2)

So, the unknown parameter 8 has a proportion estimator 6* in an exact solution

when the two parameters a and S are known.
Case I1: known parameter 8 and unknown parameters a and 6.

Let z be the number of the one’s in the sample
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ga+1 _ g2a+2f _ % (4.73)

Solving the Equations (4.72) and (4.73) gives the estimators a*, 6*of the parameters

a,0.
Case I11: known parameter @ and unknown parameters 8 and 6.

Solving the Equations (4.72), (4.73) gives the estimators £*,6* of the parameters

B.,o.
Case IV: known parameters «, 8, and 6.

Let w be the number of the two’s in the sample

92a+2ﬁ _ 93a+3ﬁ — ﬂ_ (474)

n

Solving the Equations (4.72)-(4.74) gives the proportion estimators a*, 5*,8".
(2) The Moments Method
Case I: known parameters «, f and unknown parameter 6.

Equating the first population moment to the first sample moment gives the equation

Sgx [perrd — getcvrenf] Zlym (4.75)

n
Solving the Equation (4.75) gives the estimator 8 of the parameter 6.

Case I1: known parameter £ and unknown parametersa and 6.

Equating the second population moment to the second sample moment gives

oo B B 1
Zx=0 xz [9ax+x _ 6a(x+1)+(x+1) ] — ; i=1xi2 ) (4.76)
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Solving the Equations (4.75) and (4.76) numerically gives the estimators &, and 0 of

the parameters a andf.
Case I11: known parameter a and unknown parameters 5 and 6.

Solving the Equations (4.75) and (4.76) gives the moments estimators 8 and 8 of the

parameters 8 and 6.
Case IV: known parameters «, 8, and 6.

Equating the third population moment to the third sample moment gives the equation

oo B B 1
2x=0x3 [9ax+x _ 9a(x+1)+(x+1) ] — ; i=1xi3 ] (4.77)

Solving the Equations (4.75)-(4.77) gives the moments estimators &, [,0 of the

parameters «, 3, 6.
(3) The Maximum likelihood Method

The likelihood function and the log likelihood function of the DMW (1) («, 8, 0)

distribution are

L = ?:1 [ani+xi'8 _ Ha(xi+1)+(xi+1)B]’
InL = ?zlln [eaxi+xiﬁ _ Ha(xi+1)+(xi+1)3]_

Case I: known parameters a, f and unknown parameter 6.

9 InL _ yields
90 |a=a,5=E,e=§ =0—>

n (axi+xiﬁ)9axi+xi5—1_[a(xi_l_l)_l_(xi_l_l)ﬁ]ga(xi+1)+(xi+1)ﬁ_1
i=1

[paxil _galxi+1)+ P =0. (4.78)
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Solving the Equation (4.78) gives the estimator 8 of the parameter 6.
Case I1: known parameter £ and unknown parameters a and 6.

9 InL —0 yields
da |a=a,5=f3,9=§ =U—

n 09it5P o ng_pa(ir )+ it P (. 11)1n6
n B > =0. (4.79)
[Q“xi‘*'xi _Qa(xi"‘l)"'(xi"'l) ]

Solving the Equations (4.78) and (4.79) gives the estimator @& and 8 of the

parameters a and 6.

Case I11: known parameter  and unknown parameters 8 and 6.

9 InL yields
=0—

0@xi+xi (VB 1n(x)— o@D+ i+ 0P (4198 1n(xi4+1) _
[eaxi+xiﬁ _ea(xi+1)+(xi+1)ﬁ]

it 0. (4.80)

Solving the Equations (4.78), (4.80) gives the estimator § and 8 of the parameters

B and 6.

Case 1V: known parameters a, 3, and 6.
Solving the Equations (4.78)-(4.80) gives the estimator &, 8, and 8 of the parameters
a,f,and 6.

4.4.4 Special Distributions from DMW (1) Distribution

Many discretized distributions follows as special cases of DMW (1) («, 3, 0)
distribution. Examples are the discretized linear failure rate, discretized Weibull,

discretized Rayleigh, and discretized exponential distributions.
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As one of our new results the discretized linear failure rate distribution is

handled in detail. The remaining discretized distributions are referred shortly. This
distribution follows from the DMW (1) (a, 8, 0) distribution as special case when

B = 2. The discrete linear failure rate distribution is referred to as DLFR («, 0)

distribution. This distribution corresponds to the case when

g(x) = ax + x2. (4.81)

The pmf of the DLFR (a, 6) distribution has the form

P(x) = g@x+¥* — galr+ D+ y = 0,12, . (4.82)
I:Iﬁ T T T T
‘F(x,uaa,nstejm R |

é:(x,nj,n.am‘]
ple 025 02030 02F i .
I:I cl:l .3 " N ' '
0 2 4 6 8 10

Figure 413 The pmf of DLFE distribution o differert parmamete s’ values,

As a special distribution of DMW (1) («,B,0) distribution, all the
characteristics of the DLFR(a, ) distribution are simply obtained from the

characteristics of the DMW (1) (a, 8, 6) distribution by substituting the value g = 2.

When g = 2, Equation (4.59) gives the cumulative distribution function of the DLFR
(a, 0) distribution

Fy(x) = 1 — gaG+D+@+1)? (4.83)
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Figure 4. 14 The cdf of DLFE. distrdbutions at dfferert parmmeters' walues.

The survival function of the DLFR («, 8) distribution follows from Equation (4.60)

when £ = 2 in the form

S, (x) = galx+1)+(x+1)? (4.84)
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Figure 415 The swvival function of DLFR distributions at different parameters' values

Substituting the value 8 = 2 into Equation (4.61) gives the failure rate function of

the DLFR (e, 6) distribution in the form

r(x) = 1 — gar2x+l, (4.85)

]'F e ——————
rlx 1.136,0.223 -

rint 1y 02k

{02508

rl(x0.15027 08F

04 1 1 1 1
0 2 4 & 2 10

X

Figure 416 The failure rate Punction of DLFE distribution at different parameters values

The second failure rate function of the DLFR (a,8) distribution follows from

Equation (4.62) when 8 = 2 in the form
SRF; = —[a+2x + 1] In#6. (4.86)

In light of Equation (4.63) when 8 = 2, the residual reliability function of the DLFR

(a, 0) distribution is
R (i|x) = gait2ile+1)+i? (4.87)
The cumulative hazard function of the DLFR(a, 6) distribution is

Hi(x) = x — Y5, 09%2t+L (4.88)
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The DLFR (a, 6) distribution has an increasing failure rate (IFR), since the following

equivalent conditions are satisfied

IFR1: {1 —@*+2x+1} . isan increasing sequence.

IFR2: Forall i € N*{pia+2((x+D+"} s a decreasing sequence.

Also, the DLFR (a, 8) distribution has an increasing failure rate in average (IFRA),

since the following equivalent conditions are satisfied

1
IFRAL: {(9“<x+1)+(x+1)2) /x} is a decreasing sequence.

x21

IFRA2: {1 — iz’;:l 9“””1} is an increasing sequence.

x21

The rt" moments about zero of the DLFR (a, 6) distribution follows from Equation

(4.65), when # = 2 in the form
pe=EX") = Y2, (x" — (x — 1)")gex+x*, (4.89)

From Equation (4.89) the moments u, can be easily obtained by substituting the
suitable value of r into this equation.

ﬂi — 2;0=1 9ax+x2,

Wy = T2 (2x — 1) g+

wh = Y2 (3x2 — 3x + 1)gx+x’,

= T2, (4x3 — 62 + 4x — 1)g+

Some moments, central moments, skewness, and kurtosis are evaluated at different

parameters values.

The median of the DLFR (e, 8) distribution is determined, at selected values of the

parameters a, 6 by the numerical solution of the equation
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In2

a(m+1)+(m+1)2+ln9 0.
Or, equivalently
2 In2) _
m +(a+2)m+(1+a+ln9)—0. (4.90)

The median m of the DLFR (I) (a,8) distribution can be obtained by solving

Equation (4.90). For selected values of the parameters (a, 8) = (8.849, 0.986) m = 6.
The mode of the DLFR («, 8) distribution can be located graphically. The mode

values corresponding to (a,6) = (1.136, 0.803), (0.5, 0.607), (0.25, 0.803) are

respectively, D =0, 0, 1. This is illustrated in Figure (4.13).

The moment generating function of the DLFR («, 6) distribution has the form

My(®) =E(e™) =1+ X5, (e* — e(x‘l)t)e‘“*’fz. (4.91)
Differentiating Equation (4.91), gives the r*"* derivative of the mgf in the form
MO (1) = X2, (xe™ — (x — 1)Te@Dt)gax+x® =1 2 (4.92)

The first four moments w,., r =1, 2, 3, 4 can be easily obtained by simply substituting

these values of r into Equation (4.92).

Hy = My (D=0 = X524 9xa+x2,

py = My (£)]r=0 = Xx=1(2x — 1) 9xa+x2,

Hy = My ()]0 = Dy (3x2 — 3x + 1)0 7+,

Ha = M (Dlimg = Ta (4x% — 632 + dx — 1)+
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The probability generating function of the DLFR (a,8) distribution is easily

obtained, by substituting 8 = 2 into Equation (4.70), in the form
Gix(®) = E(t%) = 1+ (t — 1) T, t&—D gax+r®, (4.93)

From Equation (4.93) the mean, second moment, and the variance can be obtained, in

the form

E(X) = X5, 0%+,

E(X?) = 32, (2x — 1) oo+,

Var(X) = Y2, (2x — 1) %%+ — (32, em+x2)2. (4.94)

The parameters of the DLFR(a,0) distributions are estimated by the

proportion, the moments, and the maximum likelihood methods.
(1) The Proportion Method

Case I: known parameter a and unknown parameter 6.
This case of DMW (1) (a,f,0) when a, B =2 are known and 6 is unknown.

Therefore, the unknown parameter 6 has a proportion estimator 8* of the form

g = (1 3 X)(1+a)‘1.

n

Proof: Let y be the number of the zero’s in the sample

P(O; o, a) = [9“(0)"'(0)2 — 90-’(0+1)+(0+1)2] _Y
n

yields [90 _ 9a+1] _Y
n

yields [1 _ 0a+1] _ y
n

(4.95)
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yields 9a+1 —1 Y
n

ield
S (@+)e=In(1-2)

yields In(1-2
——1nf = (-3)

(ax+1)

In(1-2
yields ( (5[“7)1))
ﬁ e
yields y A+a)?t
(-

n

Case I1: unknown parameters a and 6.
Let z be the number of the one’s in the sample, i,e.

P(1;6,a) = [9a+1 _ 02“+4] — %

The proportion estimator for a, 6 are given by

Proof:

From (4.96) in (4.97)

ylelds; [9a+1 _ 92(a+1)+2] -z
n

(1) (-2 0 =

yie_>ms(1—3)292=(1—z)—5

93

(4.96)

(4.97)

(4.98)



From (4.98) in (4.96)

ield
T @+ 1)Ine* =ln(1—%)

yields ln(l—%)
—s (a+1) = T
. Y
ld In(1-=
yields o = n( n) 1
Ino*

(2) The Moments Method
Case I: known parameter a and unknown parameter 6.

Equating the first population moment to the first sample moment gives the equation
TR0 = =T ox; (4.99)
Solving the Equation (4.99) gives the estimator 8 of the parameter 6.

Case I1: unknown parameters a and 6.

Equating the second population moment to the second sample moment gives

1

24(20 — DO =~y X7 (4.100)

Solving the Equations (4.99) and (4.100) gives the estimator & and @ of the

parameters a and 6.

(3) The Maximum likelihood Method

The likelihood and the log likelihood functions of the DLFR («, ) distribution are
I = l—[?zl[eaxﬁxiz — ea(xi+1)+(xi+1)2],

InL = ?21 ln[gaxi+xi2 _ Ha(xi+1)+(xi+1)2]l
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Case I: known parameter a and unknown parameter 6.

3 InL _ yields
90 |a=a,9=§ =0

n (ax[+xi2)9axi+xi2_1—a(xi+1)+(xi+1)29a(xi+1)+(xi+1)2_1
=1 [gaxi+xl-2_ea(xl-+1)+(xi+1)2]

=0. (4.101)

Solving the Equation (4.101) gives the estimator 8 of the parameter 6.

Case I1: unknown parameters «, 6.

9 InL —0 yields
da a=a,0=0 —

2 2
n gaxitx; .xi—Ga(xi+1)+(xi+1) (+1)

= 0. (4.102)

i=1 [ani+xi2_ga(xi+1)+(xi+1)2]

Solving the Equations (4.101) and (4.102) gives the estimators & and  of the

parameters a and 6.

As a second special case of the DMW (1) (a, B, 8) distribution, we briefly refer
to the discrete Weibull distribution. This distribution is denoted by DW (g, 6)
distribution. This distribution is obtained from DMW (1) (a, 8, 6) distribution when
a=0.
So, the cdf becomes
Fix) =1—006+DF g =¢-2

(Nakagawa and Osaki (1975))

As a third special case of the DMW (1) («, £, 8) distribution, we briefly refer to
the discrete Rayleigh distribution. This distribution is denoted by DR (6)
distribution. The DR () distribution is obtained from DMW (1) («, 8, 8) distribution

when a = 0and 8 = 2. The cdf is
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F(x) =1—90+D* g = =4,
(Roy (2004))

As a fourth special case of the DMW (1) («, 5, 8) distribution, we briefly refer
to the discrete exponential distribution. This distribution is denoted by DE (6)
distribution. The DE (8) distribution is obtained from DMW (1) (a, 8, 8) distribution

when £ = 0. The cdf has the form
Fi(x) =1—-6%*D g =¢e2,
4.5 Discrete Modified Weibull Type Il Distribution

Using the first discretizing approach, introduced in Section 3.2 of Chapter IlI,

of the general class of continuous distributions and putting

g(x) = xPe®, (4.103)
we obtain the survival function of the MW (1) (e, B, A) distribution as follows

S(x) = e~ AxPe

Using the notation 8 = e, (0 < @ < 1), the survival function is

S(x) = xFe™,

By using Equation (4.3), the probability mass function of the DMW (II) (a, 3, 6)

distribution is

P(x) = Hxﬁeax _ 6(x+1)5ea(x+1)’x =012, .. (4.104)
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To prove that P(x) is a probability mass function it should be

(i) P(x) = 0, trivial,since0 <68 <1, >0,a >0

(i) TP =1,

Proof:

2?:0 P(x) = 2;‘;0 [exﬁeax . 6(x+1)/39a(x+1)]
= (90»860((0) + elﬁea(l) n 92‘890‘(2) N ".)

_ (elﬁea(l) + HZBe"‘(Z) + 633604(3) + )
=0 =@ =1,

Substituting Equation (4.103) into Equation (4.4) gives the cumulative distribution

function of the DMW (Il) («, 8, 8) distribution in the form
Fy(x) = 1 — gl+Dfedtt) (4.105)
This is the cdf of MW (II) (a, 8, A) distribution calculated at (x + 1). It is clear that

lim, o+ F;(x) =0 andlim,_ .- F;(x) = 1.
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4.5.1 Some Reliability Measures of the DMW (11) Distribution

Substituting Equation (4.103) into Equation (4.5) gives the survival function of the

DMW (1) (a, B, 6) distribution in the form
Sl(x) — 9(x+1)5e“(x+1)_

(4.106)

This is the same as the survival function in the continuous case at (x + 1).
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Substituting Equation (4.103) into Equation (4.6) gives the failure rate function of

the DMW (1) (, B, 8) distribution in the form

1y (x) = 1 — ge+Dfertr—xfeax (4.107)

1 T T S

rilz0.15 0.1,0.861)0 5
2y

025 ,0.1,06070 5

T
; h_\\‘\-a,_,—g P - L-" i £
1] 2

X

Figure 4.20 The failure rate function of DWW distrdbation at different pammetes’ values

rl(x0.5,0.1,0779) "4
0.2
4 § 8 10

Substituting Equation (4.103) into Equation (4.7) gives the second failure rate

function of the DMW (Il) («, 8, 8) distribution in the form
SRF;(x) = (xPe™ — (x + 1)Pe*>**D)Ino. (4.108)

Substituting Equation (4.103) into Equation (4.8) gives the residual reliability

function of the DMW (Il) («, 8, 8) distribution in the form
R, (i|x) = QOr+i+DFPedCHHD-(xr1yfeatxtt) (4.109)

Substituting Equation (4.103) into Equation (4.9) gives the cumulative hazard

function of the DMW (Il) («, 8, 8) distribution in the form

Hy(x) = x — Y%, g+Dferttri-tFest (4.110)
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The DMW (I1) (a, B, 0) distribution has an increasing failure rate (IFR), since the

following equivalent conditions are satisfied

IFRL: {1 — gG+fe ™ ™=xPe} s an increasing sequence.

x21

. i +i+1)_ +1 . .
IFR2: Foralli € N* {6(x+‘+1)ﬁe“(x HO-(rn)fet )} is a decreasing sequence.
x=1

Also, the DMW (1) (a, B, ) distribution has an increasing failure rate in average

(IFRA), since the following equivalent conditions are satisfied

a(x 1/x - -
IFRAL: {(9("+1)ﬁ et “)) } is a decreasing sequence.

x=1

1 t+1) _ t . - .
IFRA2: {1 ~ Y g Dfestt—tFec } is an increasing sequence.
x=1

4.5.2 Properties of the DMW (11) Distribution

Substituting Equation (4.103) into Equation (4.10) gives the r** moments about zero

of the DMW (II) («, B, 8) distribution in the form
pe=EQX") = T8, (x" — (x— 1)) e, (4.111)

Equation (4.111) gives the first four moments about zero of the DMW (I1) («, 3, 0)

distribution by substituting the value r =1, 2, 3, 4.
W= E(X) =35, 077,

W = E(X?) = 32, (2x — 1),

s = E(X?) = $2.,(3x% — 3x + 1)6*"¢™,

wh = E(X*Y) = T2, (4% — 6x2 + 4x — 1)g°7¢™,
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The median of the DMW (l) (a, B, 8) distribution can be determined by solving the

equation

In(2)

B ,a(m+1)
(m+1)Pe +—= 0

= 0. (4.112)

Proof:

P(X < m) > ;)Lmi 1— 9(m+1)ﬁea’(m+1) >

N| =

yields _ 9(m+1)ﬁea(m+1) = 1

2

yields 9(m+1)ﬁe“(m+1) < 1
2

ld
Y (m + 1)Be®miD n g < In (3)

ylelds (1)
B ,a(m+1)
— (m+ 1)Pe ST

The median of the DMW (Il) (a, 3, 0) distribution can be obtained by solving
equation (4.112). For selected values of the parameters (a,3,6) = (0.01, 1, 0.897)

the median is m = 5.

The mode of the DMW (Il) (a, B, 0) distribution can be located graphically. The
mode values corresponding to (a,f,08) = (0.15, 0.75, 0.861), (0.25, 0.15, 0.607),

(0.5, 0.5, 0.779), the mode values are D =0, 0, 0. This is illustrated in Figure (4.17).

Substituting Equation (4.103) into Equation (4.11) gives the moments generating

function of the DMW (Il) (a, B, 8) distribution in the form

My(t) = 1+ 32, (et — eC-Dt)gxfe™ (4.113)

101



Calculating the derivatives of the moment generating function at t = 0 gives the first

four moments of the DMW (Il) (a, B, ) distribution in the form

a(x)

My = My (D)), = 252,677,

Hy = My (D))o, = Da(2x — 1),

s = MO (1)), = S5, (3% — 3x + 1§77
wh = MO (0)),_, = T2 (4x® — 6x% + 4x — 1) ",

Substituting Equation (4.103) into Equation (4.12) yields the probability generating

function of the DMW (Il) («, 8, 8) distribution in the form
G (8) = 1+ (t — 1) X, t@D gxPe™ (4.114)

Calculating the first and second derivatives at t=1 gives the first and the second

factorial moments of the DMW (1) («, B, 8) distribution in the form

a(x)

/ o B
Ui = G [X](t) = D=1 07¢,

a(x)

" o0 B
piz1 = G x)(0) = 2 X5 (x — 1) O*°

The second moment and variance of the DMW (1) (e, B, ) distribution are

a(x)

E(X?) = Ti,(2x — 1) %77,

Var(X) = ¥, (2x — 1) 9xFe*® (z;‘;l ax"’e“(’”)z.

4.5.3 Estimation of the Parameters of the DMW (11) Distribution

The parameters a, 8, 6 of the DMW (11) distribution will be estimated by:

(1) The Proportion Method

Case I: known parameters a and £ and unknown parameter 6.

The proportion estimator of 8 has the form

102



o =(1-3)

Proof: Let y be the number of the zero’s in the sample

P(0;,,8) = 87 — g1e*| = %

jeld «
60— 6] =2 (4.115)
yields

—_— 1—9‘3“]:%

yields Qe“ —1— y
n

ield.
TS eng =In(1-2)

yields In(1-Z
Ing =2

—> 1n
e’

In(1-2)
yields . o
— 0" =e

-a

%9*:(1_X)e
n

So, the unknown parameter has a proportion estimator in an exact form when the two

parameters o and f are known.
Case I1: known parameter £ and unknown parameters a and 6.

Let z be the number of the one’s in the sample

P(1;a,B,0) = [6133“(1) - Hzﬁe“(z)] =§

ield. a a
e - 07| =2 (4.116)

Solving the Equations (4.115) and (4.116) numerically gives the estimators
a* and 6" of the parameters o and 6.
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Case I11: known parameter & and unknown parameters 8 and 6.

Solving the Equations (4.115) and (4.116) gives the estimators S*and 6* of the

parameters 8 and 6.
Case 1V: unknown parameters «, 5, and 6.

Let w be the number of the two’s in the sample

P(2;a,B,0) = [Bzﬁe“(z) — 03ﬁe“(3)] ==

n

yields [Hzpem _ 63Be3a] _w (4.117)

n

Solving the Equations (4.115) - (4.117) numerically yields the estimators

a*,B*, and 6* of the parameters «, 5, and 6.
(2) The Moments Method
Case I: known parameters a and 8 and unknown parameter 6.

Equating the first population moment to the first sample moment gives the equation

Y x [Q(x)ﬁea(x) _ 0(x+1)ﬁea(x+1)] =" ;. (4.118)

n
Solving the Equation (4.118) gives the estimator 8 of the parameter 6.

Case I1: known parameter £ and unknown parameters a andé.

Equating the second population moment to the second sample moment gives

© Bea(x) B oalx+1) 1
T2 g x? [g07 e — gl Z 2ym 42 (4.119)

Solving the Equations (4.118) and (4.119) gives the estimators & and 8 of the

parameters o and 6.

104



Case I11: known parameter & and unknown parameters 8 and 6.

Solving the Equations (4.118) and (4.119) gives the estimators § and 6 of the

parameters 8 andé.
Case 1V: Unknown parameters a, 3, 6.

Equating the third population moment to the third sample moment gives the equation
Z;ozoxﬁ [H(x)ﬁe“(x) _ 6(x+1)/3ea(x+1)] — % ?=1xl'3 . (4120)

Solving the Equations (4.118) - (4.120) gives the estimators &, f,and 6 of the

parameters a, 5, and 6.
(3) The Maximum likelihood Method

The likelihood and log likelihood functions of the DMW (1) (a, 8, 8) distribution

are:

L =TT, [exi‘*e“"i _ 9<xi+1)ﬁe“(’%+ﬂ],
InL = ?:1111 [exiﬁeaxi _ H(xi+1)ﬁea(xi+1)].

Case I: known parameters a and 8 and unknown parameter 6.

9 inL yields
36 |a=a,ﬁ=ﬁ g=9g =V —
n (xi)Bea(xi)e(xi)‘ge“(xi)—l_(xi+1),8ea(xi+1)g(xi+1)Be“(xi+1)—1

= P _gxprnyBe(xit1) =0. (4.121)

Solving the Equation (4.121) analytically gives the estimator 8 of the parameter 6.

Case I1: known parameter £ and unknown parameters a and 6.
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9 InL _ yields
oa |a=a,ﬁ=B,9=§ =0—>

00x0)” 00 () B o) i A U 1y By sy aleit)

n
g CepPe®(x0) _ g(x+1)Be(xit1) = 0. (4.122)

i=1

Solving the Equations (4.121) and (4.122) gives the estimators @ and 8 of the

parameters a and 6.

Case I11: known parameter a and unknown parameters S and 6.

9 InL yields
|a=a,/3=/?,9=§ =0—>

n g(xi)ﬁea(xi)ea(xi)(xi)ﬁln(xi)_g(xi+1)3ea(xi+1)ea(xl-+1)(xi+1)3ln(xl_+1) 3

i=1 e(xi)Bea(xi)_g(xi+1)ﬁea(xi+1)

0. (4.123)

Solving the Equations (4.121), (4.123) gives the estimators S and 8 of the

parameters 8 and 6.
Case IV: unknown parameters a, 8, and 6.

Solving the Equations (4.121) - (4.123) gives the estimators &, p,and 6 of the

parameters a, 5, and 6.
4.5.4 Special Distributions from DMW (I1) Distribution

Many discretized distributions follow as special cases from DMW (II)
distribution. Examples of such distributions are the discrete Weibull distribution,
discrete extreme - value distribution, discrete Beta integrated model, and discrete

Rayleigh distribution.
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The DMW (1) (e, 8, 8) distribution reduces to the discrete Weibull distribution

DW (@, B) distribution when a = 0, where
S(x) = 9(x+1)ﬁ,6 =e 4,
(Nakagawa and Osaki (1975))
When =2, =0 the DMW (Il) (a,p,60) distribution reduces to the
discrete Rayleigh DR (8) distribution, where,
S (x) = 90+D? g = g2,
(Dilip Roy (2004))
Also, the DMW (I) (a, B, 0) distribution reduces to the discrete Extreme-
value Type (1) DEXV (1) («, 8) distribution by setting 8 = 0, where
S (x) = HQWH), 0 =e
(Nakagawa (1978))
4.6 Summary

In this chapter, many issues regarding the discrete general class of continuous

distributions theoretically and could be summarized as below:

1) Generating discrete form of the general class of continuous distributions

2) Deducing reliability measures and characteristics of the discrete general class.

3) Introducing some generalized discrete models, such as the DMWE, DMW (1)
and DMW (11).

4) Obtaining new discrete distributions obtained from the DMWE and DMW (1)

which are called DChen and DLFR distributions respectively.
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5)

6)

7)

8)

Discussing the probability mass function, the cumulative distribution function
and some of their distributional properties.

However, the closed form for the distributional properties cannot be
achieved.

Estimating the parameters in several cases by using the PM, MM and MLM.

The unknown parameter 6 has a proportion estimator in exact solution.
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Chapter V

Simulation Studies

5.1 Introduction

A MathCAD simulation is an environment for Computational Thinking — an
approach to calculation, data analysis and problem solving that uses the capabilities
of a computer to construct better solutions. This program is used frequently in our

study to conduct simulation studies and to get numerical results.

Some discrete distributions are introduced from discretizing a general class of
continuous distributions. These are DMWE, DChen, DMW (1), DLFR and DMW (II)
distributions. The properties of these distributions are studied. The parameters of
these distributions are estimated. The estimation methods are compared based on the

performance of the estimators.

5.2 The DMWE Distribution

The properties of the DMWE (o, f, 6) distribution are studied. The
performance of the parameters at selected values of parameters with different sample

sizes and different cases are compared.
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5.2.1 Properties of the DMWE Distribution

The properties of the DMWE distribution are studied, such as the r-th

moments, the central moments, first and second moments and mode at selected

values of parameters.

Using Equation (4.27) the first four moments of the DMWE (o,B,0)

distribution are determined for some selected values of the parameters. The results

are included in Table 5.1.

Table 5.1 The rt* moments at different values of parameters

a=20 =067 a=3,0=0549 o =40 =0.449
r B B p

1 2 3| 1 2 3 1 2 3
1 | 1611 | 1428 | 1451 |2.001 |2.056 |2.151 |2.28 2595 | 2.804
2 | 4168 | 2567 |2.456 | 6561 |5.229 | 5222 |8.695 |8291 |8.808
3 | 12.601 | 5.045 | 4.466 | 25.615 | 14.664 | 13.561 | 40.085 | 29.333 | 29.587
4 | 42.488 | 10.601 | 8.487 | 112.627 | 44.071 | 36.893 | 209.869 | 111.385 | 104.279

a=20=0368 a=30=0223 a=40=0135

r B B B

1 2 3] 1 2 3 1 2 3
1 |0.735 ]0.932 | 1055 |0.8886 | 1.347 | 0.0001 | 0.986 | 1.698 | 2.117
2 | 1227 | 1292 | 1414 | 1776 |2518 | 141 | 2216 |3.909 |5.239
3 | 2427 |2013 |2.132 | 4345 |5326 | 4506 | 6.202 | 10.249 | 14.159
4 | 5516 |3.458 |3.567 | 12.382 | 12.358 | 23.769 | 20.441 | 29.504 | 70.729

a=20=0.018 a=3,60=0.0024 a=4,60=0.00033

r B B B

1 2 3] 1 2 3 1 2 3
1 | 0075 032 ]0587 |0.097 |0529 |0924 |0.109 |0.702 | 1.241
2 | 077 |0.323 |0589 |0.103 | 0599 |1.176 |0.12 0918 | 1.991
3 /0081 |0.327 |0593 |0.118 |0.738 | 1682 | 0.142 |1.619 |3.978
4 |0089 |0335 |0601 |0.146 |1.018 |2.694 |0.195 |2.298 |7.028

Table 5.1 shows that when 0 decreases and o increases, the " moments

increase for most values of B. For fixed a and 6 when B becomes large, the rt"

moments decrease.

Using the results in Table 5.1 central moments, skewness, and kurtosis are

included in Tables 5.2.
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Table 5.2 The central moment, skewness and kurtosis at different values of
parameters

a=20=067 a=3,0=0.549 o =40 = 0449
r B B B

1 2 3| 1 2 3 1 2 3
2 1573 0527 |0351 | 2551 | 1.001 | 0.597 | 3.497 | 1.556 | 0.947
3 10819 -0.126 | -0.116 | 2.257 | -0.204 | -024 | 4.313 | -0.261 | -0.417
4 | 5.984 0.714 | 0294 |17.118 | 2.483 | 0.986 | 34.436 | 5.853 | 2.498
as | 0.415 -0.329 | -0558 | 0552 | -0.204 | 052 | 0.66 | -0.134 | -0.452
a, | 2418 2571 | 2386 | 2.001 | 2478 | 2766 | 2.816 | 2.417 | 2.785

a=20=0368 a=3,0=0223 a=40=0135

r B B B

1 2 3 1 2 3 1 2 3
2 0687 0423 [0301 | 1.756 | 0.929 | 1525 | 1.244 | 1.025 | 0.759
3 0515 0.02 | 00005 | 3.683 | 0.739 | -1.548 | 1564 | 0.129 | -0.145
4 | 1.482 0424 | 0298 | 12.008 | 2.089 | 3.993 | 6.07 | 2573 | 1.536
as | 0.904 0073 | 003 | 1.583 | 0.825 | -0.804 | 1.127 | 0.124 | -0.219
a, | 3.14 237 | 3280 | 3894 | 2421 | 1717 | 3922 | 2.449 | 2.666

a=206=0018 a=3,0=0.0024 a=4,60=0.00033

r B B B

1 2 3 |1 2 3 1 2 3
2 0071 022 |0244 | 0094 | 0319 | 0.323 | 0.109 | 0425 | 0.45
3 | 0.064 0.083 |-0.04 | 0.089 | 0.084 | -0.00019 | 0.108 | 0.123 | -0.000785
4 | 0.067 0083 | 007 | 0106 | 0229 | 0318 | 0.141 | 0454 | 0.536
@, | 13291 | 0.804 | -0.332 | 3.088 | 0.466 | -0.011 | 3.001 | 0.444 | -0.026
a, | 3.14 1715 | 1176 | 11.996 | 2.25 | 3.048 | 11.87 | 2513 | 2.647

Table 5.2 shows that the central moments decrease when B becomes large at

fixed values of a and 0 decreases. For small values of B and 0, and a large, the

distribution becomes positively skewed and leptokurtic, but when B becomes large,

the distribution becomes negatively skewed and platykurtic.

The mode of the DMWE distribution is determined for different values of the

parameters. The results are included in Table 5.3.
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Table 5.3 The mode of the DMWE distribution at different values of parameters

a=20=0.76 a=3,0=0.549 a=4,0=0449
p p p

1 2 3 = 2 3 =>4 1 2 3 =4

1 ]2 J2 ]2 2 |2 |2 0o [3 |3 |3

a=260=0.368 a=3,0=0.223 a=460=0.135
p p p

1 2 3 = 2 3 =>4 1 2 3 =4

o |1 |1 |1 11 |2 |2 0 [2 |2 |3

a=26=0018 a=3,60 =0.00247 o= 4,0 = 0.00033
p p p

1 2 3 =>4 12 3 =9 1 2 3 =9

0o Jo 1 |1 0 Jo |1 |2 0 [1 1 3

Table 5.3 shows that when a, B increase and 6 decreases, the mode increases.
The value of mode does not change when B > 4, except for too small values of 0, the

mode does not change when > 9.
5.2.2 Performance of Estimators of DMWE Parameters

The parameters of the DMWE distribution are estimated by the proportion
method, the moments method, and the maximum likelihood method. This is done in
four different cases:

Case I: known parameters a and B and unknown parameter @

The performance of the proportion estimator 6%, the method-of-moments
estimator 8, and the maximum likelihood estimator 8 are compared. The comparison
included the bias, variance, and mean squared error. The results are present in Table

5.4.
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Table 5.4 Case I: known parameters &« = 3 and B = 5 and unknown
parameter 6

6 = 0.105
0.75 PM MM MLM
n 0* 7] 0
10 Bias 0.805 0.022 0.019
Var 0.082 0.0096 0.0057
MSE 0.729 0.01 0.0060
20 Bias 0.715 0.013 0.016
Var 0.148 0.0056 0.0014
MSE 0.658 0.0057 0.0017
50 Bias 0.497 0.0064 0.0035
Var 0.237 0.0023 0.00097
MSE 0.484 0.0024 0.00098
60 Bias 0.48 0.0048 0.00309
Var 0.238 0.0020 0.00070
MSE 0.468 0.0021 0.00071
100 | Bias 0.043 0.00014 0.000429
Var 0.009 0.00016 0.0011
MSE 0.011 0.00016 0.0011
200 | Bias 0.01 —0.000187 —0.00078
Var 0.001 0.0000243 0.00081
MSE 0.001 0.0000243 0.00081

From Table 5.4 it is observed that for the estimation of & when a and 3 are
known, the MM is the best when the sample size becomes large. When the effective
sample size is small (say less than 30) or moderate then the MLM is the best one to

be applied.

Case I1: known parameter g and unknown parameters a and 6

The performance of the proportion estimators a*and 6%, the method-of-
moment estimators @ and 8, and the maximum likelihood estimators &, are
compared. The comparison included the bias, variance, and mean squared error. The

results are present in Table 5.5.
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Table 5.5 Case I1: known parameter g = 5 and unknown parameters 6, a

0 =0.105,a = 3
0.75 PM MM MLM
n 0* a* ] @ ] a
10 | Bias | 0.359 -0.568 0.025 0812 012  -0.105
var | 0.249 1.09 0.012 2.93 0.0091  0.056
MSE | 0377 1.412 0.013 3.588 0024  0.067
20 | Bias | 0.205 -0.287 | -0.018 0.759 0.056  0.05
var | 0.214 0.978 0.0048  2.241 0012  0.165
MSE | 0256 1.06 0.0051  2.816 0016  0.168
50 |Bias | 0.129 -0.068 | —0.0053  0.141 0021 0073
var | 0.179 0.47 0.0054  0.071 0012  0.076
MSE | 0.196 0.474 0.0054  0.092 0012  0.081
60 |Bias | 0.123 -0.059 | —0.00517 0.159 0018  0.144
var | 0.176 0.945 0.0038  0.208 0011  0.122
MSE | 0.191 0.948 0.0038  0.234 0011  0.142
100 [ Bias | 0.0019 0023 | —0.0009  0.14 | 0.0001  0.249
Var | 0.00036  1.203 0.0042  0.142 0026  0.263
MSE | 0.00036  1.203 0.0042  0.161 0.026  0.325
200 | Bias | 0.00136 —0.00007 | —0.00063 0.0023 | 0.00006  0.189
Var | 0.00036  0.0013 0.0044 00016 | 001  0.152
MSE | 0.00038  0.0013 0.0044  0.0016 | 001  0.188

Table 5.5 shows the results for the estimation of 8 and a when § = 5. For
the estimation of 8, the MM is better than the PM and the MLM for different sample
sizes. For the estimation of a, the MLM is the best when the effective sample sizes
are small (say, less than 30) or moderate. When the sample sizes become large the

PM is the best one to be applied.

Case I11: known parameter a and unknown parameters g and 0

The performance of the proportion estimators f*and 6%, the method-of-
moments estimators § and 8 , and the maximum likelihood estimators  and 8 are
compared. The comparison included the bias, variance, and mean squared error. The

results are present in Table 5.6.
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Table 5.6 Case I11: known parameter & = 3 and unknown parameters 0, 8

6 =0.105,8 =4

> 075 PM MM MLM
n 6" B 5 Fi 9 [
10 |Bias | 009 4328 0.419 0.432 0.161 -0.446
Var | 0003 13983 0.166 0.971 0.144 23.479
MSE | 0011 32717 0.342 1.157 0.17 23.677
20 [Bias | -003  3.976 0.25 0.324 0.071 0.083
Var | 0016  17.779 0.144 0.544 0.075 8.225
MSE | 0017 33592 0.206 0.649 0.08 8.231
50 |Bias | -0.003 1466 0.0027 0.013 0.011 0.364
Var | 0012 11331 | 0.0001307 0.018 0.0017 0.249
MSE | 0012 13479 | 0.0001381 0.018 0.0018  0.382
60 |Bias | -0.002  1.084 0.0024 0.047 0.0091 0.868
Var | 0011 8278 | 0.0001676 0.021 0.0074 2.871
MSE | 0011 9453 | 0.0001734 0.023 0.0075 3.624
100 [Bias | -0001 0078 | 0.000035 0.0022 0.0004 0.472
Var | 0002 0.21 0.000095 0.018 0.0035 1.243
MSE | 0002 0216 | 0.000095 0.018 0.0035 1.465
200 | Bias | —0.00008 0.049 | 0.000020 0.013 —0.00056  0.717
Var | 0002 0223 | 0.000108 0.012 0.0025 0.808
MSE | 0002 0225 | 0.000108 0.012 0.0025 1.323

Table 5.6 represents the results for the estimation of 6 and f when a = 3.

For the estimation of 6, the MM is better than the PM and MLM. When the sample

sizes become small (say, less than 30) the PM will be the best. For the estimation of

B, the MM is always better than the PM and MLM for different sample sizes.

Case IV: unknown parameters 0, a, and

The performance of the proportion estimators a*, 8% 6*, the method-of-

moments estimators &, 3, 8 , and the maximum likelihood estimators &, 3,8 are

compared. The comparison included the bias, variance, and mean squared error. The

results are present in Table 5.7.
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Table 5.7 Case IV: unknown parameters 0, a, and 8

6 =0.105a=3,8 = 4
% | 0.75 PM MM MLM
n o o B 7 i 7 G & F;
10 | Bias | -008 021 2842 | 0342 -0354 -0245| -0035 021 2157
var | 002 0472 5401 | 0123 1801 1.919 | 0.0075 0971 2112
MSE | 0027 0516 62087 | 024 1926 1979 | 0.0087 1015 6.764
20 |Bias | 0072 0209 2564 | 0262 0438 -0.151 | -0.023 003 18
var | 0025 0507 48433 | 0149 2.823 1434 | 0.0068 1047 1863
MSE | 003 055 55005 | 0218 3.015 1457 | 00073 1048 5.103
50 | Bias | -0.004 0.054 0486 | 0082 0617 0292 | —0.0055 -0.275 1.787
var | 0064 0389 11975| 0082 1751 0.896 | 0.0066 0.786  3.447
MSE | 0064 039 12211 | 0088 2132 098l | 0.0066 0862 6.642
60 |Bias | -0.003 0.035 0.186 | 0.0048 007 002 | —0.0051 -0.221 157
Var | 0064 0299 5312 | 00071 0062 0045 | 0.0067 0.901 2.278
MSE | 0064 03 5347 | 00071 0.067 0045 | 00067 095  4.743
100 | Bias | -0.001 0.023 0.112 | 0.0014 0061 0.068 | —0.0027 -0.274 1.959
var | 0064 0304 5745 | 0.0046 0.049 0066 | 0.0071 0795 3.616
MSE | 0.064 0304 5757 | 00046 0053 007 | 00071 087  7.455
200 | Bias | -0.001 0.021 0.037 | 0.00046 0.045 0062 | 0.0022 -0.187 1632
var | 0062 0322 3432 | 00048 0033 0048 | 0.0074 0978 2073
MSE | 0062 0323 3434 | 00048 0035 0052 | 0.0074 1013 4.737

From Table 5.7 it is observed that for the estimation of 8, the MLM is better

than the PM and the MM  when the sample sizes are small (less than 30) or

moderate. When the sample sizes become large, the MM will be the best one. For the

estimation of «, the PM is the best method. For the estimation of 8, the MM is

always better than the PM and MLM for different sample sizes.

5.3 The DChen Distribution

The properties of the DChen (5, ) distribution are studied. The performance

of the parameters by three methods of estimation at selected values of parameters

with different sample sizes and different cases is discussed.
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5.3.1 Properties of the DChen Distribution

The properties of the DChen (B,8) distribution are discussed, such as the rt*
moments, the central moments, first and second moments and mode at selected
values of parameters. The first four moments of the DChen (B,0) distribution are

determined for some selected values of the parameters. The results are included in

Table 5.8

Table 5.8 The rt* moments at different values of parameters

6 = 0.951 6 = 0.905 0 =0.779

r p p B

0.5 1 2 0.5 1 2 0.5 1 2
113569 2099 098 |3535 152 0.847 | 1875 0.86 0.651
2| 24648 5508 1.12 |21.639 3.2 0.856 | 7.756 1.3 0.651
3119094 15896 1.39 |154.36 7.529 0.875 |40.752 222 0.651
4| 1579 49.079 1.94 | 1203 19.22 0913 | 24996 4.24 0.651

Table 5.8 shows that the 7" moments decrease when B increases and 0
decreases.

For different values of parameters, central moments, skewness, and kurtosis

calculated. The results are included in Table 5.9.

Table 5.9 The central moment, skewness and kurtosis at different values of

parameters
0 =0.951 6 =0.905 6 =0.779

r B p B

0.5 1 2 0.5 1 2 0.5 1 2
2 |8531 1105 0.151 8.263 0.881 0.139 | 4.235 0558 0.227
3 |30.017 -03 -0.007 | 16.337 -0.027 -0.086 | 10.319 0.147 -0.069
4 1207.129 3.017 0.15 163.214 1.753 0.09 | 70.806 0.696 0.072
as; | 1.2 -0.25 -0.12 0.68 -0.033 -1.72 1.18 0.35 -0.63
a, | 2.84 2.47 6.52 2.39 2.26 4.74 3.94 2.23 1.44
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Table 5.9 shows that the most central moments decrease when P increases
and 0 decreases. The distribution becomes positively skewed when B small. For
large values of B the distribution becomes negatively skewed. The distribution is

platykurtic for small values of B and becomes leptokurtic when B large.

The mode of the DChen distribution is determined for different values of the

parameters. The results are included in Table 5.10.

Table 5.10 The mode at different values of parameters

6 = 0.951 6 = 0.905 0 =0.779
B B B

05 07 1 =2| 05 07 1 =2 {05 07 1 =>2

0 |4 |2 |1 0 | 2 2 |1 o Jo |1 |1

Table 5.10 represents the values of mode when 3 increases and 0 decreases.

The mode does not change when § > 2.
5.3.2 Performance of Estimators of DChen Parameters

The parameters of the DChen distribution are estimated by the proportion
method, the moments method, and the maximum likelihood method.

The performance of estimators of the parameters f, 6 are presented by using
three methods of estimation such as bias, variance and mean squared error at selected

values of parameters with different sample sizes in two cases.
Case I: known parameter g and unknown parameter 6.

The performance of the proportion estimator 6, the method-of-moments

estimator 8, and the maximum likelihood estimator 8 are compared. The comparison
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included the bias, variance, and mean squared error. The results are present in Table

5.11.

Table 5.11 Case I: known parameter = 0.65 and unknown parameter

0 = 0.638
A 0.45 PM MM MLM
n 0* 7] 0
10 Bias -0.005 -0.053 -0.038
Var 0.008 0.0060 0.019
MSE 0.008 0.0088 0.021
20 Bias -0.004 -0.022 -0.024
Var 0.008 0.00031 0.008614
MSE 0.008 0.00081 0.009187
50 Bias -0.003 —0.0079 —0.0093
Var 0.018 0.00035 0.00109
MSE 0.018 0.00042 0.00117
60 Bias -0.002 —0.0032 —0.0051
Var 0.002 0.0020 0.00047
MSE 0.002 0.0021 0.0005
100 | Bias -0.001 —0.00015 —0.00029
Var 0.001 0.000038 0.0012
MSE 0.001 0.000038 0.0012
200 | Bias 0.000051 0.00042 0.00057
Var 0.003 0.000059 0.000056
MSE 0.003 0.00005 0.000056

Table 5.11 represents the results for the estimation of & when g = 0.65 is
known. The PM is better than the MM and the MLM when the sample sizes become
small (say, less than 30) and large. The MM performs slightly better than the MLM

when the sample sizes become moderate.

Case I1: unknown parameters 8 and 8

The performance of the proportion estimators 8*and *, the method-of-
moments estimators Gand B, and the maximum likelihood estimator 8 and B are
compared. The comparison included the bias, variance, and mean squared error. The

results are present in Table 5.12.
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Table 5.12 Case Il: unknown parameters 6 and 8

0 =0.638, B = 0.65

»__ 045 PM MM MLM
n 6° B 7 Fi G 3
10 |Bias | 0018 0091 | -0078 0167 | 0122  0.185
Var | 0004  0.014 0.0092 0348 | 0097  0.122
MSE | 0004 0022 0015 0375 | 0112  0.156
20 |Bias | 0008 0046 | -0035 —0.0039] 0102  0.51
Var | 0016  0.041 0.016 0019 | 0.115 0.14
MSE | 0016 0043 0017 0019 | 0126  0.162
50 | Bias | 0002  0.004 001  —0.0034| 0061  0.103
var | 0002 0015 | 0.00084 0.00083| 0124  0.154
MSE | 0002 0015 | 0.00094 0.00084 | 0.128  0.164
60 |Bias | 0002 0008 | —0.0062 -0.0079] 0.031  0.035
Var | 0003 0018 | 00023 0.0039 | 0.159 0.56
MSE | 0003 0018 | 00023 00039 | 0.6 0.561
100 |Bias |0.00026 0002 | 0.00031 0.024 | 0002  0.0071
var | 0003 0018 | 00025 0.0052 | 0.001  0.306
MSE | 0003 0018 | 00025 0.0058 | 0.001  0.306
200 | Bias |0.00026 0.00008 | 0.00047 0.00091| 0.001 —0.00028
Var | 0002 0028 | 00076 0.0049 | 0001  0.168
MSE | 0002 0028 | 00076 0.0049 | 0001  0.168

unknown. For the estimation of 6, the PM is better than the MM and the MLM when
the sample sizes become small (say, less than 30) or large. When the sample sizes are

moderate, the MM is the best method. For the estimation of £, the PM is the best for

different sample sizes.

5.4 The DMW (1) Distribution

performance of the parameters by three methods of estimation at selected values of

Table 5.12 shows the results for the estimation of 8 and § when they are

The properties of the DMW (1) (e, p, ) distribution are studied. The

parameters with different sample sizes and different cases are discussed.
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5.4.1 Properties of the DMW (1) Distribution

The properties of the DMW (1) distribution are studied. These properties
include the " moments, the central moments, first and second moments and mode

at selected values of parameters.

The first four moments of the DMW (1) are determined for different values of

the parameters. The results are included in Table 5.13.

Table 5.13 The r** moments at different values of parameters

a=3,0=0.951 a= 15,0 = 0.905 o =40 =0.449
r B B B
1 2 3 1 2 3 1 2 3
1 [2797 [2325 |1504 |2347 |1.376 |0.975 | 1083 |063 |0.536
2 | 15878 |8.991 |33 11.708 |3.259 | 1.466 |3.362 |0.86 | 0.563
3 | 109594 | 43129 |8.32 |74.181 |9.447 |2515 | 1461 |1.365 |0.617
4 | 84258 | 240.485 | 23.269 | 538.489 | 31.915 | 4.816 | 80.194 | 2519 | 0.726
a=10,0 = 0.951 a=5,0 =0.905 a=1,0 = 0.607
r B B B
1 2 3 1 2 3| 1 2 3
11335 [1116 |0.887 |12 0922 0729 | 0582 |042 |0.375
2 | 4716 |2.968 | 1646 |3.969 |2013 |1.121 |1.257 |053 |0.388
3 | 22976 | 10324 |3.616 |18.265 |5579 |1.999 |3.77 |0.765 |0.415
4 | 138.042 | 43.866 | 9.06 | 104.966 | 18.634 | 4.042 | 14.858 | 1.284 | 0.469
a =156 = 0951 @ =7.5,0 = 0.905 a =150 =0.607
r B B B
1 2 3 1 2 3| 1 2 3
10814 |0731 ]0628 |0.745 |0.632 |0535 |0402 |0318 |0.291
2 2126 | 1579 | 1049 |1.849 |1182 |0.764 |0.724 |0.383 | 0.299
3 [7.813 |449 2.093 | 6.44 2812 | 1267 | 1.756 | 0521 |0.315
4 | 37178 | 1592 |4.841 |29.209 |8.183 |2406 | 5595 |0.819 |0.348

Table 5.13 shows that the 7" moments decrease when a, B increase and 0
decreases.
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The central moments, the skewness, and the kurtosis are determined for

different values of the parameters. The results are included in Table 5.14.

Table 5.14 The central moment, skewness and kurtosis at different values of

parameters
o=3,6 =0.951 o= 15,6 = 0.905 a=0.3,6 = 0.607
r B B B
1 2 3| 1 2 3 1 2 3
2 [7186 [3584 [1038 | 6.665 | 1.969 | 0.663 | 2.188 | 0.463 | 0.276
3 [ 22546 [5556 |0.234 | 20031 | 2155 | 0116 | 6.23 | 0241 | 0.2
4 [171.314 | 43.339 [ 2.656 | 154.288 | 13.121| 1.088 | 36.439 | 0.654 | 0.125
az | 117 0818 [0.221 | 1164 | 0779 | 0215 | 1.925 | 0.765 | 0.138
a, | 3317 | 3374 [2466 | 3473 | 3.384 | 2478 | 7.612 | 3.056 | 1645
a=10,0 = 0.951 a=5,8 = 0.905 a=1,6 = 0.607
r B B B
1 2 3| 1 2 3 1 2 3
2 [2.93 1722 0859 | 2527 | 1.163 | 0589 | 0.919 | 0.353 | 0.248
3 [885 |3.166 |0.632 | 7436 | 158 | 0322 | 197 | 0246 | 0.084
4 56257 [15.298 |2.143 | 45372 | 6.158 | 094 | 8.294 | 0.466 | 0.115
as | 1766 | 1.402 [0.794 | 1851 | 1250 | 0.712 | 2236 | 1177 | 0677
@, | 6553 | 5159 [2.904 | 7.105 | 4551 | 2708 | 9.815 | 3.728 | 1855
=156 = 0.951 o =7.5,6 = 0.905 a= 15,6 = 0.607
r B B B
1 2 3] 1 2 3 1 2 3
2 [ 1463 [1.045 [0.655 | 1293 [ 0782 | 0478 | 0563 | 0282 | 0.214
3 [3699 |181 |[0612 | 3.314 | 1.075 | 0347 | 1013 | 022 | 0.104
4 [ 18871 [6.997 | 1598 | 15243 | 3428 | 0762 | 3.397 | 0.358 | 0.112
a; | 2.089 |1695 |1.155 | 2132 | 1553 | 1.052 | 24 | 1476 | 1.061
a, | 8818 |6.407 [3725 | 9116 | 5601 | 3.342 |10.716 | 4532 | 2.435

Table 5.14 represents that the central moments decrease when 3 increases and

the values of o and 6 decrease. The distribution becomes positively skew for

different values of o, B and 6. The distribution becomes leptokurtic when o and 0

decrease and [ small.
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different values of the parameters, the mode is calculated. The mode values are

included in Table 5.15.

Table 5.15 The mode at different values of parameters

a=3,60=0951 a= 15,60 = 0.905 o= 0.3,6 = 0.607

p p p
1 2 3 = 2 3 =>4 2 3 =4
0o |1 2 |1 1 J1  J1 o [1 |1
a=10,6 = 0.951 a=5,6 =0.905 a=1,6 = 0.607

p p p
1 2 3 = 2 3 =4 2 3 =4
0 Jo Jo 1 o o 1 o |o o
a=15,60 = 0.951 a="75,6=0.905 o=15,60 = 0.607

p p p
1 2 3 =4 1 2 3 =4 1 2 3 =4
0 Jo Jo o 0 Jo Jo Jo 0 [o Jo Jo

5.4.2 Performance of Estimators of DMW (1) Parameters

The parameters of the DMW (1) distribution are estimated by the proportion
method, the moments method, and the maximum likelihood method.

The performance of estimators of the parameters «, 3,0 are presented by
using three methods of estimation such as bias, variance and mean squared error at

selected values of parameters with different sample sizes in four cases.
Case I: known parameters a and B and unknown parameter 6.

The performance of the proportion estimator 6%, the method-of-moments
estimator 8, and the maximum likelihood estimator 8 are compared. The comparison
included the bias, variance, and mean squared error. The results are present in Table

5.16.
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Table 5.16 Case I:known parameters a = 0.2, # = 5 and unknown parameter

6 = 0.472
a, | 0.15 PM MM MLM
n 0* 2] 0
10 | Bias 0.024 0.096 -0.011
Var 0.008 0.01 0.015
MSE 0.009 0.019 0.015
20 | Bias 0.02 0.045 -0.005
Var 0.001 0.006 0.012
MSE 0.002 0.008 0.012
50 | Bias 0.006 0.006 -0.002
Var 0.004 0.006 0.003
MSE 0.004 0.006 0.003
60 | Bias 0.006 0.003 -0.001
Var 0.001 0.002 0.006
MSE 0.001 0.002 0.006
100 | Bias 0.005 —0.00045 —0.000042
Var 0.001 0.004 0.002
MSE 0.001 0.004 0.002
200 | Bias 0.001 —0.00042 —0.000032
Var 0.001 0.001 0.004
MSE 0.001 0.001 0.004

From Table 5.16 for the estimation of , it seems that the PM is better than the
MM and the MLM only when the sample sizes become small (less than 30). When

the sample sizes are moderate or large then the ML method is the best one to apply.

Case I1: known parameter g (f = 5) and unknown parameters 8 and «

The performance of the proportion estimators 6* and a*, the method-of-
moments estimators 8 and &, and the maximum likelihood estimators 8 and & are
compared. The comparison included the bias, variance, and mean squared error. The

results are present in Table 5.17.
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Table 5.17 Case Il: known parameter g = 5 and unknown parameters 6, a

6 =0472,a = 0.2
a, | 015 PM MM MLM
n 0" a” 0 a 0 a
10 |Bias | -003 0068 | -0.012  -0015 | -0021  0.053
Var 0015 0065 | 0001 0002 | 0011  0.936
MSE | 0016 007 | 0002 0002 | 0012  0.939
20 |Bias | 0016 0042 | 001  -0038 | -0.015  0.005
Var 0008 0007 | 0002 0006 | 0007  0.04
MSE | 0009 0009 | 0002 0007 | 0007  0.04
50 |Bias | -0.002 -0.006 | -0.003  -0.007 | -0.0038 -0.013
Var | 0.0000966 0054 | 0001 0001 | 0004  0.039
MSE | 00001018 0054 | 0001 0001 | 0004  0.039
60 |Bias | -0002  -0.006 | -0003  -0.002 | -0.003  0.05
Var |0.000036 0041 | 0001 0001 | 0004  0.032
MSE | 0.000039 0041 | 0001 0001 | 0004  0.032
100 |Bias | -0001  -0.003 | -0.00I —0.00047 | -0.001  -0.004
Var | 0.000085 0028 |0.00036 0001 | 0003 0026
MSE | 0.000086 0028 |0.00036 0001 | 0003  0.026
200 |Bias | -0.00L  -0.001 | —0.0004 -0014 | —0.0004 001
var |0.000036 0038 | 0001 0002 | 0003 0075
MSE | 0.000037 0038 | 0001 0002 | 0003  0.075

Table 5.17 represents the results for the estimation of 8 and « when § = 5.
For the estimation of 6, the PM is better than the MM and the MLM when the
sample sizes are moderate or large. When the sample sizes are small (say, less than
30) the MM s the best. For the estimation of a, the MM is the best when the sample
sizes are small (say, less than 30) or moderate. When the sample sizes become large

the PM is the best one.

Case I11: known parameter a = 0.2 and unknown parameters 6 and 8
The performance of the proportion estimators 6* and £*, the method-of-

moments estimators 8 and 8, and the maximum likelihood estimators 8 and f are
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compared. The comparison included the bias, variance, and mean squared error. The

results are present in Table 5.18.

Table 5.18 Case I11: known parameter a = 0.2 and unknown parameters 0, 8

0 =0472,8=5
a; | 015 PM MM MLM
n a 3 0 B 0 B
10 | Bias | 0.006 0.121 0.026 0.279 0.336 131
Var 0.011 0.192 0.031 0.727 0.081  23.025
MSE | 0011 0.206 0.031 0.805 0194 24771
20 |Bias | 0.005 0.112 0.015 0.167 0.317 1.03
Var 0.008 0.149 0.009 0.16 0.085 24397
MSE |  0.008 0.162 0.009 0.188 0.185  25.458
50 |Bias | 0.001 0.085 0.004 0.12 0293  0.659
Var 0.006 0.094 0.006 0.103 0.089 25866
MSE |  0.006 0.101 0.006 0.117 0175 26301
60 |Bias | 0.001 0.085 0.002 0.123 0282 0527
Var 0.005 0.085 0.002 0.042 0.089 2657
MSE | 0.005 0.093 0.002 0.057 0.169  26.847
100 | Bias | —0.000087 0.053 | 0.00011  0.115 0225  -0533
Var 0.007 0.109 0.001 0.022 0.095  27.176
MSE |  0.007 0.111 0.001 0.035 0.145  27.46
200 | Bias | —0.000084 0.041 | 0.0000087  0.111 0206  -0.86
Var 0.007 0.265 0.004 0.079 0.095  27.059
MSE |  0.007 0.267 0.004 0.091 0.137  27.798

Table 5.18 Shows the results for the estimation of 6 and f when a = 0.2.

For the estimation of 8 and 3, the PM is better than the MM and the MLM when the

effective sample sizes are small (say, less than 30) or moderate. When the sample

size is large then the MM will be the best for estimating 6 and £.

Case IV: unknown parameters 6, a and f8
The performance of the proportion estimators 8*, a*and *, the method-of-

moments estimators 8 ,&@ and 8, and the maximum likelihood estimators 8,
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@& and B are compared. The comparison included the bias, variance, and mean

squared error. The results are present in Table 5.19.

Table 5.19 Case IV: unknown parameters 8, a and 8

0=0472, 0 =02, =5

a, | 0.15 PM MM MLM
n o* a  p |8 i B 9 @ 7
10 | Bias 0.027 0.102 1.588 -.012 -.015 0.149 0.526 18.446 1511
Var 0.021 0.026 0.431 | 0.005 0.003 0.094 |.000003t 1542.74 33.931
Mse | 0.021 0036 2951 | 0.005 0.003 0.116 0.276 1882.98 36.215
20 | Bias 0.016 0.027 0.473 | -.009 -.005 0.155 0.526 18.234 1.593
Var 0.012 0.001 0.115 | 0.003 0.001 0.044 |.000003t 1509.85 33.525
Msg | 0.012 0.001 0339 | 0.003 0.001 0.068 0.276 1842.32 36.063
50 | Bias 0.005 0.014 0.275 | -.003 -.008 0.177 0.525 17.607 1.304
Var 0.002 0.002 0.049 | 0.002 0.001 0.041 |.000007¢ 1417.25 37.213
MsgE | 0.002 0.002 0125 | 0.002 0.001 0.073 0.275 1727.25 38.912
60 | Bias 0.004 0.011 0.272 -.003 -.013 0.18 0.525 17.61 1.228
Var 0.002 0.002 0.012 | 0.003 0.002 0.046 |.000007 1418.66 36.835
msg | 0.002 0.002 0.086 | 0.003 0.002 0.078 0.275 1728.78 38.344
100 | Bias 0.001 0.001 0.103 -.002 -.012 0.182 0.523 15.677 1.497
Var 0.004 0.004 0.19 0.005 0.003 0.092 |.000007 1138.43 35.06
Mmsg | 0.004 0004 0201 | 0.005 0.003 0.125 0.273 1384.16  37.302
200 | Bias | —.00039 —.00003 0.089 -.001 -.013 0.194 0.52 18.54 1.602

var | 0004 0001 0116 | 0.004 0001 0.057 |.0000001 1558.14 33.185
MSE | 0004 0001 0124 | 0004 0002 0095 | 0271 1901.78 35.752

Table 5.19 shows the results for the estimation of 6, and f when they are

unknown. For the estimation of 6 and a , the MM is better than the PM and the ML
method when the effective sample sizes are small (say, less than 30) or moderate.
When the sample sizes become large, the PM will be the best method. For the

estimation of § the MM is always the best method to apply.
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5.5 The DLFR Distribution

The properties of the DLFR (a, 6) distribution are studied. The performance
of the parameters by three methods of estimation at selected values of parameters

with different sample sizes and different cases are discussed.

5.5.1 Properties of the DLFR Distribution
The properties of the DLFR distribution are studied. These properties include
the r** moments, the central moments, first and second moments and mode at

selected values of parameters.

The first four moments of the DLFR are determined for different values of

the parameters. The results are included in Table 5.20.

Table 5.20 The r** moments at different values of parameters

6 = 0.905 8 =0.779 6 = 0.607
r a a a
15 2.5 5 0.6 1 2 0.3 0.5 1

1698 1409 0922 |1021 0.887 0.634 |0.63 0.56 0.42
4854 3704 2013 |1903 1577 1015 |0.86 0.746  0.53
17.091 12.147 5579 |4.287 34 1969 |1365 1.151 0.765
70.176 46.952 18.634 | 11.258 8.592 4528 | 2519 2.067 1.284

Al W N -

Table 5.20 shows that the rt* moments decrease when a increases and 0
decreases.

The central moments, the skewness, and the kurtosis are determined for

different values of the parameters. The results are included in Table 5.21.
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Table 5.21 The central moment, skewness and kurtosis at different values of

parameters
6 = 0.905 6 =0.779 6 = 0.607
r a a v}
0.5 1 2 0.5 1 2 0.5 1 2
2 |1.969 1.719 1.163 0.86 0.791 0.613 | 0.463 0.432 0.353
3 | 2155 2.084 1.58 0.587 0.599 0.548 | 0.241 0.25 0.246
4 113121  10.794 6.158 2.391 2119 1499 | 0.654 0.596  0.466
as | 0.779 0925 4.92 0.74 0.85 1.14 0.765 0.88 1.17
a, | 3.385 3.653  4.55 3.235 3.39 3.98 3.05 3.2 3.75

Table 5.21 represents that most central moments decrease when o increases

and 0 decreases. The distribution is positively skew for different values of a and 6.

The distribution is leptokurtic for all selected values of parameters.

The mode values are determined at different values of the parameters. The

results are included in Table 5.22.

Table 5.22 The mode at different values of parameters

6 = 0.905 6 =0.779 6 = 0.607
a a
15 25 =5 0.6 1 = 03 0.5 > 1
1 |1 | 0 1 |0 |0 |0 I

Table 5.22 represents the mode value when o increase and 0 decreases. The

mode does not change when a becomes large.

5.5.2 Performance of Estimators of DLFR Parameters

method, the moments method, and the maximum likelihood method.

The parameters of the DLFR distribution are estimated by the proportion




The performance of estimators of the parameters a and 6 are presented by
using three methods of estimation such as bias, variance and mean squared error at

selected values of parameters with different sample sizes in two cases.

Case I: known parameter a = 0.2 and unknown parameter 6

The performance of the proportion estimator 6%, the method-of-moments

estimator 8, and the maximum likelihood estimator 8 are compared. The comparison
included the bias, variance, and mean squared error. The results are present in Table

5.23.

Table 5.23 Case I: known parameter a = 0.2 and unknown parameter 6

6 = 0.827
a; | 0.15 PM MM MLM
n 0* 6 6
10 | Bias -0.009 -0.014 -0.011
\Var 0.006 0.004 0.004
MSE 0.006 0.004 0.004
20 | Bias -0.005 -0.012 -0.008
Var 0.001 0.003 0.002
MSE 0.001 0.003 0.002
50 | Bias -0.003 -0.002 -0.004
Var 0.002 0.001 0.001
MSE 0.002 0.001 0.001
60 | Bias -0.002 -0.001 -0.003
Var 0.001 0.00014 0.001
MSE 0.001 0.00014 0.001
100 | Bias -0.001 —0.00045 -0.001
Var 0.001 0.001 0.001
MSE 0.001 0.001 0.001
200 | Bias —0.00026 —0.0004 —0.00001
Var 0.00025 0.000045 0.00011
MSE 0.00028 0.000045 0.00011

From Table 5.23 it can be observed that for the estimation of 6, the MM is
the best method when the effective sample sizes are moderate or large. When the

sample sizes become small (say, less than 30) the PM is the best method.
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Case I1: unknown parameters 8 and «a
The performance of the proportion estimators 6* and a*, the method-of-
moments estimators 8 and &, and the maximum likelihood estimators 8 and & are

compared. The results are present in Table 5.24.

Table 5.24 Case Il: unknown parameters 6 and a

6 = 0.607, a = 0.3
o, | 015 PM MM MLM

n 9 @ F] a i a
10 |Bias | -0.097 140312 | -0.16 414.427 0.091  5.387
Vvar | 0072 1902000 | 0.111 5546000 | 0.057 1734

MSE | 0081 1921000 | 0.137 5717000 | 0.065 1763

20 | Bias | -0.078 417.386 | -0.036 0399 | -0.057 4676
Var | 0062 5623000 | 0.045 3.373 0.056 1669

MSE | 0068 5797000 | 0.046 3532 0.06 1691
50 |Bias | 0035 0091 | -0013 0155 | 0012 0.4
Var | 0017 0727 | 0017  0.762 001 0529
MSE | 0018 0736 | 0017  0.786 001 0542
60 |Bias | 0011 0051 | -001 0064 | -0.007  0.101

Var 0.008 0.352 0.007 0.271 0.007 0.326
MSgE | 0.008 0.355 0.007 0.275 0.007 0.336

100 |Bias | -0.006  0.041 | -0.004 0195 | -0.007  0.032
Var | 0004 0151 | 0013 0884 | 0003  0.127
MSE | 0004 0152 | 0013 0922 | 0004 0128

200 | Bias -0.004 0.009 -0.001 0.046 -0.004 0.02
Var 0.002 0.066 0.004 0.122 0.004 0.112
MSg | 0.002 0.066 0.004 0.124 0.004 0.112

Table 5.24 displays the results of estimating 8 and « . In estimating 6 , the
MLM is better than the PM and the MM when the sample sizes are small (say, less
than 30) or moderate. The PM is the best method only when the sample sizes become
large. For the estimation of a, the MM is the appropriate method for small sample
sizes (say, less than 30). When the sample sizes become moderate, the MLM s the

best method. For large sample sizes, the PM and the ML method are the best.
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5.6 The DMW (II) Distribution

The properties of the DMW (II) (a, p, 6) distribution are studied. The
performance of the parameters by three methods of estimation at selected values of
parameters with different sample sizes and different cases are discussed.
5.4.1 Properties of the DMW (11) Distribution

The properties of the DMW (Il) (o, B, 6) distribution are studied. These
properties include the r** moments, the central moments, first and second ratio
moments and mode at selected values of parameters.

The first four moments of the DMW (1) (a, S, ) distribution are determined

for different values of the parameters. The results are included in Table 5.25.

Table 5.25 The r** moments at different values of parameters

a=0126=0914 a=20.560=0914 a=16=0914
r B p B
1 2 3 1 2 3 1 2 3
1 |4.032 2.029 1.358 | 1.847 1.264 |1.003 | 1.052 | 0.853 | 0.788
2 | 24.807 | 5.582 2.34 4.719 2122 |1.286 | 1.598 | 0.993 0.798
3 |176.137 | 17.859 | 4.532 | 13.662 | 3.998 | 1.851 |2.718 1.273 0.817
4 | 1362 63.795 | 9.609 | 43.228 |8.227 | 2.982 | 5.037 1.832 0.856
a=20.1,60=0951 a =0.56 =0.951 a=16=0951
r B B B
1 2 3 1 2 3 1 2 3
1 | 4.207 2.75 1.73 2.472 1.637 | 1.26 1.4 1.101 0.925
2 | 29.13 9.809 3.654 | 7.811 3.347 | 1.944 | 2,552 1.558 1.029
3 | 225.084 | 40.25 8.627 | 27.519 | 7.614 |3.326 |5.151 2472 1.237
4 | 1854 182.845 | 22.147 | 104.644 | 18.755 | 6.131 | 11.236 | 4.303 1.654
a=0.1,6 =0.896 a =0.560 =0.896 a=160=0.896
r B B B
1 2 3 1 2 3 1 2 3
1 |3.741 1.816 1.245 | 1.652 1.148 | 0.926 | 0.94 0.78 0.743
2 | 21.631 | 4.564 2.001 | 3.905 1.8 1.108 | 1.339 | 0.858 | 0.746
3 | 146.602 | 13.372 | 3.621 |10.521 | 3.176 | 1.474 |2.144 1.013 | 0.752
4 | 1094 43.878 | 7.19 31.127 |6.139 | 2.206 | 3.779 1.322 0.764
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Table 5.25 Shows that the " moments decrease when a, B increase and 0

fixed.

The central moments, skewness, and kurtosis of the DMW (1) Distribution

are determined at different values of the parameters. The results are included in

Table 5.26.

Table 5.26 The central moment, skewness and kurtosis at different values of
parameters

a=0.1,6=0.951

a =0.560=0.951

a=160=0951

r B B B
1 2 3| 1 2 3 1 2 3
2 8037 2244 [0662 | 1.703 [ 0.666 | 0.356 | 0592 | 0.345 | 0.173
3120628 [0931 |0.015 |-0.204 | -0.048 | -0.021 | -0.079 | -0.003 | -0.036
4 1160.039 |13538 [1204 | 694 | 1.167 | 0324 | 0.877 | 0.337 | 0.163
as | 0.905 0277 |0.027 |-0.091 | -0.088 | -0.099 | -0.173 | -0.014 | -0.5
ay | 2477 2688 | 2748 | 2393 | 2634 | 2571 | 2505 | 2.832 | 5.62
a=01,60=0914 a=0586=0914 a=16=0914
r B B B
1 2 3 1 2 3] 1 2 3
2 | 7722 1467 [0.495 | 1.306 | 0523 | 0.279 | 0.492 | 0.265 | 0.177
3 [10511 [0582 [0.009 | 0.117 | -0.009 | 0.0006 | 0.001 | -0.027 | -0.09
4 | 134842 [591 |0675 | 3965 | 0699 | 0279 | 0539 | 0.236 | 0.096
as | 0.49 0328 | 0025 | 0078 |-0.023| 0.004 | 0.002 | -0.198 | -1.216
a, | 2.261 2746 | 2755 | 2325 | 256 | 3.623 | 223 | 3371 | 3.09
a=0.1,0 =0.896 a =056 =0.896 a=1,6=0896
r p p p
1 2 3 |1 2 3 1 2 3
7.27 1264 [045 | 1177 | 0482 | 0252 | 0.456 | 0.249 | 0.194
9.921 0.487 |0.008 | 0.182 | 0.001 | -0.018 | 0.03 | -0.045 | -0.09
123839 |4.416 |0556 | 3211 | 0581 | 0.244 | 0472 | 0.183 | 0.086
as | 0.506 034 0026 | 0143 | 0.002 | -0.142 | 0.097 | -0.362 | -1.058
ay | 2.343 2765 |2.738 | 2318 | 2504 | 3873 | 228 | 2.951 | 2.324

Table 5.26 represents that most of central moments decreases when [3

increase and the values of a increase. For different values of B and 6, the distribution
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becomes positively skewed when o small, otherwise it becomes negatively skewed

when o large. The distribution is platykurtic for most values of parameters and it

becomes leptokurtic when all parameters become large.

The mode of the DMW (1) Distribution is determined at different values of

the parameters. The results are included in Table 5.27.

Table 5.27 The mode at different values of parameters

a=0.1,6 =0951 a =056 =0.951 a=1,60=0951
p p p

1 2 3 =4 2 3 =4 2 3 =4

6 |3 |2 |1 2 J1 J1 1 [1 |1

a=01,60=0914 a =050 =0.914 a=10=0914
p p p

1 2 3 =4 2 3 =4 2 3 =4

3 |2 |1 |1 1 J1  J1 1 |1 |1

a =0.1,0 = 0.896 a = 05,0 =0.896 a=1,0=0.896
p p p

1 2 3 =4 1 2 3 =4 1 2 3 =4

2 |2 |1 |1 2 J1 J1 |1 1 1 |1 J1

Table 5.27 shows that the mode values become small when a and f increase.

The mode does not changes when 3 > 4.
5.6.2 Performance of Estimators of DMW (lI1) Parameters

The performance of estimators of the parameters «, £ and 6 are presented by
using three methods of estimation such as bias, variance and mean squared error at

selected values of parameters with different sample size in four cases.

Case I: known parameters a¢ = 0.15, 8 = 2 and unknown parameter 6

The performance of the proportion estimator 6%, the method-of-moments

estimator §, and the maximum likelihood estimator 8 are compared. The comparison
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included the bias, variance, and mean squared error. The results are present in Table

5.28.

Table 5.28 Case I: known parameters a = 0.15, 8 = 2 and unknown

parameter

6 = 0.819
A 0.2 PM MM MLM
n 0* 6 0
10 Bias -0.005 -0.021 -0.016
\Var 0.003 0.004 0.002
MSE 0.003 0.005 0.003
20 Bias -0.003 -0.007 -0.008
\Var 0.006 0.002 0.001
MSE 0.006 0.002 0.001
50 Bias -0.003 -0.003 -0.003
\Var 0.001 0.001 0.001
MSE 0.001 0.001 0.001
60 Bias -0.002 -0.002 -0.001
Var 0.003 0.001 0.001
MSE 0.003 0.001 0.001
100 | Bias -0.001 —0.00026 —0.00037
Var 0.002 0.00013 0.00010
MSE 0.002 0.00013 0.00010
200 | Bias —0.00036 —0.00022 0.00026
Var 0.001 0.00025 0.000039
MSE 0.001 0.00025 0.000039

From Table 5.28 it can be observed that for the estimation of 8, the MLM is

always better than the PM and the MM for different sample sizes.

Case I1: known parameter g = 2 and unknown parameters @ and «a

The performance of the proportion estimators 6* and a*, the method-of-
moments estimators 8 and @&, and the maximum likelihood estimators 8 and & are

compared. The results are present in Table 5.29.
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Table 5.29 Case Il: known parameter g = 2 and unknown parameters 6, a

9 =0819, a = 0.15
A 0.2 PM MM MLM
n 0* a* 7] a 2] @
10 Bias -0.05 0.53 -0.007 0.077 -0.029 0.016
Var 0.049 3.291 0.011 0.062 0.006 0.086
MSE 0.051 3.572 0.011 0.068 0.006 0.086
20 Bias -0.021 0.129 -0.005 0.073 -0.02 -0.028
Var 0.021 0.435 0.009 0.072 0.002 0.007
MSE 0.022 0.451 0.009 0.077 0.003 0.008
50 Bias -0.008 0.019 -0.002 0.03 -0.01 0.003
Var 0.008 0.056 0.005 0.027 0.003 0.009
MSE 0.008 0.056 0.005 0.028 0.003 0.009
60 Bias -0.007 0.015 -0.001 0.026 -0.005 0.009
Var 0.006 0.069 0.004 0.023 0.004 0.019
MSE 0.006 0.069 0.004 0.023 0.004 0.019
100 | Bias 0.001 0.001 0.00036 0.005 -0.001 0.004
Var 0.002 0.01 0.002 0.005 0.001 0.015
MSE 0.002 0.01 0.002 0.005 0.001 0.015
200 | Bias 0.000062 0.001 0.000031 0.00014 | 0.00015 —0.00022
Var 0.001 0.01 0.00036 0.002 0.003 0.001
MSE 0.001 0.01 0.00036 0.002 0.003 0.001

Table 5.29 represents the results for the estimation of 6 and a« when g = 2.

known. For the estimation of 6, the MLM is better than the PM and the MM when
the sample sizes are small (say, less than 30). When the sample sizes become
moderate or large the MM is the best. For the estimation of a, the MLM method is

the best for different sample sizes.
Case I11: known parameter a = 0.15 and unknown parameters 6 and 8

The performance of the proportion estimators 6* and £, the method-of-
moments estimators 8 and 8, and the maximum likelihood estimators 8 and f are
compared. The comparison included the bias, variance, and mean squared error. The

results are present in Table 5.30.
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Table 5.30 Case Il1: known parameter ¢ = 0.15 and unknown parameters 6, 8

0=0819 f=2

A 0.2 PM MM MLM

n 0" B* g g 6 B

10 Bias -0.007 1.608 0.011 0.105 -0.131 -0.823
Var 0015 20785 | 0001  0.051 0203  9.89
MSE 0.015 23.371 0.001 0.062 0.22 10.568

20 Bias -0.006 1.208 0.008 0.22 -0.128 -0.572
Var 0.012 16.08 0.005 0.382 0.204 11.062
MSE 0.012 17.54 0005 0.43 0.221 11.389

50 Bias -0.002 0.106 0.003 0.081 -0.081 0.823
Var 0.005 0.463 0.002 0.097 0.529 3.603
MSE 0.005 0.474 0.002 0.103 0.535 4.28

60 Bias -0.002 0.071 0.001 0.085 -0.031 -0.015
Var 0.003 0.284 0.002 0.084 0.155 7.756
MSE 0.003 0.289 0.002 0.092 0.156 7.756

100 | Bias 0.001 0.01 0.00015 0.041 -0.002 0.211
Var 0.001 0.049 0.002 0.073 0.008 0.359
MSE 0.001 0.049 0.002 0.074 0.008 0.404

200 | Bias 0.00021 0.007 0.000027 0.022 -0.001 0.089
Var 0.001 0.05 0.001 0.051 0.004 0.161
MSE | 0001 005 | 0001 0052 0.004  0.169

Table 5.30 Shows the results for the estimation of 6 and  when a = 0.15.

For the estimation of 8, the MM is the appropriate method for all sample sizes. For
the estimation of 8, the MM is the best when the effective sample sizes are small

(say, less than 30) or moderate. The PM is the best when the sample sizes are large.
Case IV: unknown parameters 6, a and 8

The performance of the proportion estimators 8*, a*and £*, the method-of-
moments estimators 8 ,d& and B, and the maximum likelihood estimators 8,

& and B are compared. The comparison included the bias, variance, and mean

squared error. The results are present in Table 5.31.
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Table 5.31 Case IV: unknown parameters 6, a and f8

6 =0.819, a=0.15 =2
»_ |02 PM MM MLM
n 6* a’ B g i B 9 a ;
10 |Bias | -211 0794 -882 | 0.078 0.7 -0.853 | 0.168 -0.035 1.821
Var | 2922 8968 26593 | 0.008 0.625 1467 |0.00027 1876 16.002
MSE | 2966 9598  27.37 | 0014 1115 2194 | 0028 1877 19.318
20 |Bias | -037 0636 -577 | 0.039 0482 -0635| 016 -0002 1.805
Var | 026 13459 28532 | 0.009 0659 1718 | 0.001 0.00001: 1.068
MSE | 0261 13.864 28866 | 001 0892 2121 | 0.026 0.00001¢ 4325
50 |Bias | -005 0195 -246 | 0012 0172 -0243 | 0.026 0.53 -0.259
Var | 0014 1084 3201 | 0.005 0265 09 | 0001 0103 0.443
MSE | 0014 1122 3262 | 0.006 0295 0959 | 0.002 0.127 0.5l
60 |Bias | -005 0103 -119 | 001 0132 -0192 | 0014 0277 -0.506
Var | 0.007 0544 1801 | 0.004 0189 0721 | 0007 0431 1.231
MSE | 0007 0555 1816 | 0.004 0206 0758 | 0.007 0508  1.488
100 | Bias | -002 0025 -017 | 0.001 0.004 0014 | 0.007 0017 0.36
Var | 0.003 0135 1345 | 0.00L 0034 0102 | 0003 0336 0.825
MSE | 0003 0135 1345 | 0.001 0034 0103 | 0003 0337 0.844
200 | Bias | —.00045 .0000003 .0001 | 0.0003 0.001 0.003 | 0002 -0.003 0.065
var | 0.004 0013 0497 | 0001 0027 0119 | 0002 0056 0.169
MSE | 0004 0013 0497 | 0001 0027 0119 | 0002 0056 0.173

From Table 5.31 it is observed that for the estimation of 8, the MM is always

better than the PM and the MLM for different sample sizes. For the estimation of «,

the MLM is the best when the effective sample sizes are small (say, less than 30) or

moderate. When the effective sample sizes are large the MM is the best one to be

applied. For the estimation of 8, the MM is always the best method for all sample

sizes.

5.7 Summary

A MathCAD simulation is conducted to study the properties and the

performance of all estimators for the new discretized models. Many points of

interest can be listed as:
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1. The r*™ moments decrease when P increases for all studied discretized
distributions.

2. The mode value starts to be fixed when B increases for all discretized
distributions.

3. Evaluation of the central moments shows that

(@) For small values of B, the DMWE and DChen distributions become
positively skewed and platykurtic. These distributions become negatively
skewed and leptokurtic when [ large.

(b) DMW (1) and DLFR distributions become positively skew. These
distributions sometimes become leptokurtic or platykurtic depends on f
small or large, respectively.

(c) For large values of B, The DMW (II) distribution becomes negatively
skewed when a and 6 become large and positively skewed when o and 6
become small. For the kurtosis the distribution becomes leptokurtic when all
parameters increase and become platykurtic when some parameters decrease.

4. For the DMWE and DChen distributions, the PM is better when the sample sizes
are small. For moderate or large sample sizes, the MM is the best one.

5. For the DMW (I) and DLFR distributions, the PM and the MM are commonly
better when the sample sizes are small, moderate or large.

6. For the DMW (I1) distribution, the MM and MLM are good for different sample

sizes.
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Chapter VI

Conclusion and Recommendations

This chapter involves the summary of thesis, its results, and some suggestions of
future work.
6.1 Introduction

In this thesis, Chapter | presents an introduction and comprehensive
information about creating a general class of discretized continuous distributions as
well as, the distributions that were applied in this thesis. Chapter Il describes the
definitions and notations that used in the thesis.

Chapter 111 presents the historical review of the discretizing methods and a
review about the distributions used in the thesis. Chapter IV investigates the
theoretical statistics of the distributions such as the properties and methods of
estimation. Finally, Chapter V uses the MathCAD software, to study some properties
and methods of estimations of the parameters.

6.2 Conclusion

The purpose of this thesis is to explore three new lifetime distributions
suitable and flexible for modeling discrete data by presenting a general class of
discretized continuous distribution. The new models are DMWE, DMW (I), and
DMW (1) that contain three parameters «, 5, 8. We carry out a theoretical study of

the obtained distributions, discussing their distributional properties, developing the
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measures of reliability in the discrete case and describing the distributions
graphically. However, the closed form for the distributional properties could not
achieve. In addition, the parameter estimation of the discussed distributions are
obtained by using three methods of estimation PM, MM, and MLE. For each method

four cases are studied:

Case I: unknown parameter 8 and known parameters and 8 .
Case II: unknown parameters 8 and a and known parameter .
Case IlI: unknown parameters 8 and  and known parameter « .
Case IV: unknown parameters 8, a and f3.

The estimators cannot be obtained in exact form, except case | for PM only
can derive the parameter 6 as exact solution. Therefore, simulation studies are

required to achieve the parameter estimation.

Special cases from DMWE and DMWI are obtained which are called DChen
and DLFR distributions respectively. The distributional properties are discussed, and

the parameters are estimated.

Simulation studies are developed to investigate the parameters of the DMWE,
DMWI and DMWII distributions and for the special cases DChen and DLFR
distributions. The results of the three methods are compared. The r'" moments, the
central moments, the skewness, the kurtosis and the mode at different values of

parameters are computed.

Simulation results of the parameter estimation on the DMWE showed that the

performance of the estimators of 0 is better by using the MM when the sample sizes
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become moderate and the MLM is the best method to apply when the sample size
becomes large. For the performance of the estimator o, the PM and MLM are better
when the sample sizes are small or moderate. When the sample sizes become large
then the MM is the best one. For the performance of the estimators of f the MM is

the appropriate method at different sample sizes.

For DChen distribution it appears that the performance estimators of 0 is
better by using the PM when the sample sizes become small. When the sample sizes
are moderate or large the MM is the best method. For the performance estimator of 3

the MM is the appropriate method at different sample sizes.

For DMW (1) distribution it appears that the performance of estimators of 0 is
better by using the PM or MM for all sample sizes. For the performance of
estimators of o, the MM is the appropriate method when the sample sizes are small
or moderate but the PM is the best one to apply when the sample size becomes large.
For the performance estimator of B the MM is the appropriate method at different

sample sizes.

For the DLFR it appears that the performance of estimators of 0 is better by
using the PM when the sample sizes become small. When the sample sizes are large
the MM is the best method. When the sample sizes are moderate then the MLM is
the best. For the performance of estimators of a the MM is the best method when the
sample sizes become small. The MLM is the best when the sample sizes become

moderate. When the sample sizes become large then the PM is the best.

For the DMW (II) it appears that the performance of estimators of 6, the MM
and MLM are the appropriate methods at different sample sizes. For the

performance of estimators of o, the MLM is the appropriate method when the sample
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sizes are small or moderate and the MM is the best one to apply when sample sizes
are large. For the performance of estimators of § the MM is the appropriate method

at different sample sizes.

6.3 Future Recommended work

Based on our present study, there are some suggestions for future researches

regarding the following points:

1. Creating new discretized distributions, using the general class and
studying their properties, estimating parameters and related results.

2. Estimating the parameters of the obtained distributions in Bayesian and
comparing the results with our results.

3. Constructing confidence intervals for the discretized distributions.

4. Estimating the parameters based on censored samples.

5. Comparing the distribution results in the continuous and discrete cases.
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