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ABSTRACT

Metric convexity is a fundamental concept in the study of geometry of metric spaces.
There are several ways in which one can introduce the notion of convexity in metric
spaces. In this thesis, we mainly consider W -convex metric spaces, introduced by
Takahashi in 1970. Such spaces include Banach spaces, convex subsets of Banach
spaces and certain subsets of metric linear spaces. Subsequently, Machado (1973),
Talman (1977), and Naimpally, Singh and Whit�eld (1983) and Beg and Azam (1986),
among others, developed this theory and obtained �xed point theorems in W -convex
metric spaces. Since then there has been great developments in this �eld and it is
presently an active area of research. Further progress has recently been done in the
related study of M -convex, Hyperconvex and CAT(0) spaces. In this thesis, we have
presented an up-dated research done in this area and also its applications in Non-linear
Analysis including Fixed Point Theory and Best Approximation.
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INTRODUCTION

The notion of convexity plays an important role in many results in Mathematics.
In particular, metric convexity is a fundamental concept in the study of geometry
of metric spaces. There are several ways in which one can introduce the notion of
convexity in metric spaces. Uniform convexity and strict convexity on Banach spaces
were �rst introduced by Clarkson in 1936. These concepts were extended to metric
linear spaces by Ahuja, Narang and Trehan in 1977. The hyperconvexity in general
metric spaces (not necessarily linear) was introduced by Aronszajn and Panitchpakdi
in 1956. The concept of M -convexity was introduced by Khalil in 1988.

A further di¤erent viewpoint to convexity is due to Takahashi (1970), who considers
a metric space (X; d) to be convex if there exists a function W : X � X � I ! X,
called a convex structure if, for any (x; y; �) 2 X �X � I and z 2 X,

d(z;W (x; y; t) � t:d(z; x) + (1� t):d(z; y):

The set X with this convex structure W is called a W -convex metric space (or
a WCM space) and is denoted by (X; d;W ). Such spaces include Banach spaces,
convex subsets of Banach spaces and certain subsets of metric linear spaces. Subse-
quently, Machado (1973), Talman (1977), and Naimpally, Singh and Whit�eld (1983)
and Beg and Azam (1986), among others, developed this theory and obtained �xed
point theorems. Since then there has been great developments in this �eld and it is
presently an active area of research. Further progress has recently been done in the
related study of hyperconvex and CAT(0) spaces (see the list of references).

In this thesis, we have presented an exposition of the results of these authors on
Fixed Point Theory and Best Approximation and obtain some generalized results.

In Chapter 1, we give basic de�nitions and results of Functional Analysis. These in-
clude Topological Spaces, Normed Spaces, Weak Topologies, Hausdor¤Metric, Strictly
and Uniformly Convex Spaces and Best Approximation.

In Chapter 2, we present some Classical Fixed Point Theorems and some of their in-
teresting generalizations. These include famous results of Banach, Brouwer, Tychono¤-
Schauder, Kannan, Edelstein, Kirk and Caristi.

We have considered the notion of W -convex Metric space in Chapter 3. Here we
also study some Fixed Point and Best Approximation results for WCM Spaces.

Chapter 4 is devoted to the study of various types ofM -convex Metric Spaces. We
discuss relationship between such spaces. Also we give some results on Fixed Points
and Best Approximation in Strict M -Convex metric spaces.

Finally, in Chapter 5, we study the classes of Hyperconvex Space, R-trees and
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0. INTRODUCTION x

CAT(0)-spaces. As applications, we again present some versions of Fixed Point The-
orems and Best Approximation in such spaces.



Chapter 1

Functional Analysis Background

In this chapter, we include the basic material for the thesis such as (1) Topological and

Metric Spaces, (2) Normed Spaces and Topological Vector Spaces, (3) Weak Topolo-

gies on Normed Spaces, and (4) Hausdor¤ Metric on cb(X), (5) Strictly Convex and

Uniformly Convex Metric Linear Spaces, (6) Convexity of Open balls in Metric Linear

Spaces, (7) Best Approximations in Metric Linear Spaces. The detail of these can

be found in the books of G.F. Simmons (1963), S. Willard (1970), W. Rudin (1991),

E.W. Chenny (1966), I. Singer (1970), R.B. Holmes (1972), F. Deutsch (2001) and

M.A. Khamsi and W.A. Kirk (2001) and some relevant papers.

1.1 Topological and Metric Spaces

In this section we present some basic de�nitions and results on topological spaces.

De�nition: Let X be a non-empty set. A collection � of subsets of X is called a

topology on X if it has the following properties:

(i) X; ? 2 � .
(ii) The union of any number of members of � belongs to � .

(iii) The intersection of a �nite number of members of � belongs to � .

In this case (X; �) is called a topological space and each set U in � is called an

open set. A subset A of X is said to be closed set if its complement XnA is an

open set. For any x 2 X; a subset W of X is called a neighborhood of x if there
exists an open set V such that x 2 V �W: In particular, every open set U containing
x is called an open neighborhood of x.

De�nition: Let (X; �) be a TS.
(1) For any x 2 X, a subcollection �x � � is called a local base at x if, for each

neighborhood U of x, there exists a V 2 �x such that x 2 V � U .
(2) A subcollection � � � is called a base (or basis) for � if, for any U 2 � and

1



1. Functional Analysis Background 2

x 2 U , there exists V 2 � such that x 2 V � U (or equivalently U 2 � is a union of
sets in �).

(3) A subcollection 
 � � is called a subbase (or subbasis) for � if the �nite
intersection of sets in 
 form a base of � .

De�nition: Let (X; �) be a topological space and A � X. A point x 2 X is

called a limit point of A if each neighborhood of x contains a point of A other than

x: The closure of A, denoted by A or (or cl(A)); is de�ned as A = A[fall limit points
of Ag. A is said to be dense in X if A = X.

De�nition: (1) A relation � on a set D is called a direction (or a directed
relation) if:

(i) � � �;for all � 2 D (re�exive),

(ii) if � � �; � � 
; then � � 
 (transitive);
(iii) if �; � 2 D; there exists a 
 2 D such that 
 � �, 
 � � (directive).
In this case, (D;�) is called a directed set.
(2) A net in a set X is a mapping f of a directed set D into X. We denote this

net by ff(�) : � 2 Dg or fx� : � 2 Dg; where x� = f(�) 2 X.
(3) A net fx� : � 2 Dg in a topological space (X; �) is said to be convergent to

x 2 X if, given any neighborhood U of x, there exists �0 2 D such that

x� 2 U for all � � �0;

(i.e., x� 2 U eventually). In this case, x is called the limit of the net and we write

x� �! x.

De�nition: (1) If X is a non empty set, then a function d : X �X ! R is called
a metric on X if, for any x; y; z 2 X;

(M1) d(x; y) � 0;
(M2)(i) d(x; x) = 0, i.e. x = y ) d(x; y) = 0;

(M2)(ii) d(x; y) = 0) x = y;

(M3) d(x; y) = d(y; x) (symmetry);

(M4) d(x; y) � d(x; z) + d(z; y) (triangle inequality).
(2) If d is a metric on a set X, then the pair (X; d) is called a metric space.
(3) For any x 2 X and r > 0, the sets

B(x; r) = fy 2 X : d(y; x) < rg

B[x; r] = fy 2 X : d(y; x) � rg

are called open ball and closed ball, respectively, with center x and radius r.
(4) A subset U of a metric space (X; d) is called a d-open set if, for each x 2 U ,

there exists r > 0 such that B(x; r) � U:
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(5) If d is a metric on a set X, then collection td of all d-open sets is a topology on

X, called themetric induced by d. Clearly, the collection B = fB(x; r) : x 2 X; r > 0g
is a base for the topology td:

(3) A topological space (X; �) is said to be metrizable if there exists a metric
(resp. pseudo-metric) d on X such that � = td:

Note. (1) Any non-empty setX becomes a metric space with respect to the trivial
metric given by

d(x; y) =

(
1 if x 6= y
0 if x = y;

x; y 2 X.

(2) If (X; �) is a topological space, then � is the discrete topology i¤ it is induced

by the trivial metric.

Now we consider various generalization of the metric function ([BKMP09], [BBI01]).

De�nition: For any set X, a function d : X �X ! R is called:
(i) a semi-metric (or pseudo-metric) on X if it satis�es all conditions of a

metric except (M2)(ii).

(ii) an asym-metric on X if it satis�es all conditions of a metric except (M3)

(symmetry).

(iii) a quasi-metric on X if it satis�es all conditions of a metric except (M4)

(triangular inequality).

(iv) a pre-metric on X if it satis�es all conditions of a metric except (M2)(ii),

(M3) and (M4).

Example (1) For any set X (with two or more distainct points), de�ne d : X �
X ! R by

d(x; y) = 0 for all x; y 2 X:

Then d is a semi-metric but not a metric (since for x 6= y 2 X, d(x; y) = 0). Clearly,
d is a metric on X i¤X is a singleton.

Example (2) If X = R, let d : R� R! R be given by

d(x; y) =

(
x� y if x � y
1 if x < y;

x; y 2 R:

Then d is an asym-metric, but not a metric on R (since, for x > y, d(x; y) = x� y 6=
y � x = d(y; x) and so d is not symmetric).

Example (3) For any metric space (X; d), de�ne 
 : 2X ! R by


(A;B) = inffd(x; y) : x 2 A; y 2 Bg, A;B 2 2X .

Then 
 is a pre-metric on 2X but it need not be semi-metric, asym-metric or quasi-

metric (since it need not satisfy(M2)(ii), (M3) and (M4)).
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Remarks. (1) If d is a asym-metric on any setX, then the function d� : X�X ! R
de�ned by

d�(x; y) =
1

2
[d(x; y) + d(y; x)], for all x; y 2 X,

is symmetric and hence a metric on X.

(2) As in the case of a metric space, a pre-metric d on a set X gives rise to a

topology as follows: A subset U of (X; d) is called a d-open set if, for each x 2 U ,
there exists r > 0 such that B(x; r) � U: However, in this case, in general, the d-open
balls B(x; r) themselves need not be open sets with respect to this topology (as its

proof requires the triangle inequality and symmetry). In fact, the interior of a d-open

ball B(x; r) may be empty.

De�nition: [BKMP09] A function d : X �X ! R is called a partial metric on
X if, for any x; y; z 2 X;

(PM1) d(x; y) � 0;
(PM2)(i) x = y , d(x; x) = d(x; y) = d(y; y);

(PM2)(ii) d(x; x) � d(x; y);
(PM3) d(x; y) = d(y; x) (symmetry);

(PM4) d(x; y) � d(x; z) + d(z; y)� d(z; z).
Example. If X = R+, let d : R+ � R+ ! R be given by

d(x; y) = maxfx; yg for all x; y 2 R+.

Then d is a partial metric on X.

De�nition: Let (X; d) be a metric space.
(1) A sequence fxng = fxn : n 2 Ng � (X; d) is said to be convergent to x 2 X

if, given any " > 0; there exists an integer n0 such that

d(xn; x) < " for all n � n0;

in this case, we write xn ! x:

(2) fxng is said to be a Cauchy sequence if, given any " > 0; there exists an

integer n0 such that

d(xn; xm) < " for all n;m � n0:

Note. Clearly, every convergent sequence is a Cauchy sequence.
De�nition: Let A be a subset of a metric space (X; d).
(i) The diameter �(A) of A is de�ned as

�(A) = supfd(x; y) : x; y 2 Ag:
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(ii) A is called a bounded set if its diameter �(A) < 1, i.e., if there exists a
constant M > 0 such that

d(x; y) �M for all x; y 2 A;

Note. (1) It is easy to see that every Cauchy sequence (in particular, convergent
sequence) fxng in (X; d) is bounded.

(2) The converse need not hold. The sequence

fxng = f(�1)n : n � 1g = f�1; 1;�1; 1; :::g � R

is bounded but neither Cauchy nor convergent. However, it has two convergent sub-

sequence

fx2ng = f(�1)2ng = f1; 1; 1; :::g ! 1;

fx2n�1g = f(�1)2n�1g = f�1;�1;�1; :::g ! �1:

(3) (i) If I = [a; b] or (a; b), then its diameter �(I) = b� a:
(ii) If A = f 1n : n � 1g = f1;

1
2 ;
1
3 ; :::g � R, then

�(A) = supfj 1
n
� 1

m
j : n;m � 1g = 1:

(iii) If A = f1; 2; 3; :::g � R, then �(A) =1.
(iv) The diameter of a triangle (or a triangular area) in R2 is the length of its

longest side.

(v) The diameter of a rectangle (or a rectangular area) in R2 is the length of its
diagonal.

De�nition: Let (X; d) be a metric space, and let A � X. Then A is called

complete if every Cauchy sequence in A converges to a point in A:
Note. Let A � (X; d). Then:
(a) A is complete ) A is closed.

(b) Conversely, suppose (X; d) is complete. Then A is closed ) A is complete,

(hence A is complete , A is closed).

De�nition: Let X and Y be a topological spaces.

(1) A function f : X ! Y is said to be continuous at x0 2 X if, for each

neighborhood V of f(x0) in Y , there exists a neighborhood U of x0 in X such that

f(U) � V ; f is said to be continuous on X if it is continuous at each x 2 X.
(2) A function f : X ! Y is called a homeomorphism if f is continuous, one-one,

onto and f�1 : Y ! X is continuous.

Note. It is often convenient to use the following equivalent conditions for conti-
nuity of f : X �! Y :
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(a) For each open set V � Y; f�1(V ) is open in X.
(b) For each closed set W � Y , f�1(W ) is closed in X.
(c) For any x 2 X. and a net fx�g � X,

x� ! x in X implies that f(x�)! f(x) in Y:

De�nition: Let (X; dX) and (Y; dY ) be metric spaces. A mapping f : (X; dX) �!
(Y; dY ) is said to be continuous at x0 2 X if, given any " > 0, 9 � > 0 such that

dY (f(x); f(x0)) < " if dX(x; x0) < �.

Theorem 1.1.1. Let (X; dX) and (Y; dY ) be metric spaces and f : (X; dX) �!
(Y; dY ) a function. Then the following conditions are equivalent:

(a) f is continuous at x0 2 X.
(b) For any sequence fxng � X,

xn ! x0 in X implies that f(xn)! f(x0) inY

i,e., lim
n!1

f(xn) = f( lim
n!1

xn):

De�nition: A topological space (X; �) is called:
(1)Hausdor¤ if, for any two points x 6= y inX; there exist two open sets U; V � X

such that x 2 U; y 2 V and U \ V = ?;
(2) normal if, for any two closed sets A;B � X with A \B = ?, there exist two

open sets U; V � X such that A � U;B � V and U \ V = ?;
(3) completely regular if, for any closed set A � X and x 2 X with x =2 A,

there exists a continuous function f : X ! [0; 1] such that f(x) = 0 and f(A) = 1

(i.e., f(y) = 1 for all y 2 A):
De�nition: Let (X; �) be a topological space, and let A � X.
(1) A collection U = fG� : � 2 Ig of open subsets of X is said to be an open

cover of A if
A � [�2IG�:

If U and V are two covers of X, then V is said to be a re�nement of U if each V
2 V is contained in some U 2 U .

(2) A is called compact if every open cover of A has a �nite subcover.
(3) A is called sequentially compact if every sequence fxng in A has a convergent

subsequence fxnkg1k=1 with limit in A.
(4) A is called relatively compact if its closure A is compact.

(5) X is called locally compact if each x 2 X has a relative compact neighbour-

hood;
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(6) X is called paracompact if every open cover U of X has re�nement V which
is locally �nite (i.e. each x 2 X has a neighbourhood which intersects only a �nite

number of members of V);
(7) A collection fA� : � 2 Ig of subsets ofX is said to have the �nite intersection

property if, for any �nite subcollection fA�1 ; :::; A�ng of fA� : � 2 Ig,
nT
i=1
A�i 6= ?.

In this case, it may happen that
T
�2I

A� = ?.

Theorem 1.1.2. [Sim63; Will70] (a) A closed subset A of a compact space X is

compact.

(b) A compact subset A of a Hausdor¤ space X is closed.

(c) The continuous image of a compact set is compact.

(d) Every compact metric space is complete.

(e) Every metric space is normal, completely regular and paracompact.

(f) A metric space X is compact i¤ it is sequentially compact.

(g) A topological space is compact i¤, for any collection fA� : � 2 Ig of closed
subsets of X with the �nite intersection property,

T
�2I

A� 6= ?.

Note. As counter-examples, we mention that:
(1) X = R with the usual metric is not compact: The collection U = f(�n; n) :

n 2 Ng is an open coner of R, but it has no �nite subcover of R.
(2) Let X = [0; 1] with the usual metric and A = (0; 1). Then A � X and X is

compact, but its subset A is neither closed nor compact.

(3) Let X = R with the usual metric and Ar = [r;1). Then fAr : r 2 Rg is a
collection of closed sets in R with the �nite intersection property, but

T
r2R

Ar = ?;

hence R is not compact.
(4) The set R of all real numbers with the usual topology given by the metric

d(x; y) = jx� yj; x; y 2 R;

is locally compact and hence completely regular, but is not compact.

(5) The set Q of all rational numbers with the usual topology is not locally compact;
however, being a metric space, it is completely regular.

De�nition: Let (X; d) be a metric space and A � X: Then A is called totally
bounded (or precompact) if, for any " > 0; there exists a �nite set fx1; x2; ::::; xng �
A such that

A � [ni=1B(xi; "):

Theorem 1.1.3. Let (X; d) be a metric space and A � X. Then:
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(a) A is compact i¤ every sequence fxng1n=1 in A has a convergent subsequence

with limit in A.

(b) A is totally bounded i¤ every sequence fxng1n=1 in A has a Cauchy subse-

quence.

(c) A is compact ) A is totally bounded ) A is bounded; the converse need not

hold.

(d) A is compact i¤ A is complete and totally bounded.

(e) If A � Rn or Cn; then A is compact i¤ A is closed and bounded.

Examples. (1) Let X = R with the usual metric and A = (0; 1). Then A is totally
bounded and bounded but not compact or complete.

(2) Let X = R with the discrete metric and A = R. Then A is bounded but not
totally bounded or compact.

Theorem 1.1.4. (Urysohn lemma) (a) Let X be a normal space, and let A and

B be closed subsets of X with A \ B = ?: Then there exists a continuous function
' : X ! [0; 1] such that '(A) = 0 and '(B) = 1:

(b) Let X be a locally compact Hausdor¤ space, K a compact subset of X, and

U a neighborhood of K. Then there exists a continuous function ' : X ! [0; 1] such

that '(K) = 1 and the support of ' is compact and contained in U . (The support
of ' is the closure of the set fx 2 X : '(x) 6= 0g).

Theorem 1.1.5. (Tietze extension theorem) Let X be a normal space, and let A

be a closed subset of X. Then, for any continuous function f : A ! [0; 1] (or R),
there exists a continuous function g : A! [0; 1] (or R) such that g = f on A. (Here

g is called a continuous extension of f from A to X).

De�nition: If A is a bounded subset of R, then:
(a) � = inf A means: (i) � � x for all x 2 A; (ii) given any " > 0; there exists

y 2 A such that � � y < �+ ":
(b) � = supA, means: (i) x � � for all x 2 A; (ii) given any " > 0; there exists

z 2 A such that � � " < z � �
Remark. If A is a bounded subset of R, � = inf A and � = supA, then there

exist sequences fang, fbng in A such that an ! � and bn ! �. Hence �; � 2 A:
De�nition: (i) A function ' : X ! R is continuous at x0 2 X if

lim
x!x0

'(x) = '(x0):

(ii) A function ' : X ! R is upper continuous at x0 2 X if

lim sup'(x) � '(x0) as x! x0:

(iii) A function ' : X ! R is lower continuous at x0 2 X if

lim inf '(x) � '(x0) as x! x0:
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Theorem 1.1.8. (a) A function ' : X ! R is continuous , it is both upper and

lower semicontinuous.

(b) The characteristic function �A of a subset A of X is upper (resp. lower)

semicontinuous , A is closed (resp. open).

(c) Every upper (resp. lower) semicontinuous function assumes its supremum

(resp. in�mum) on a compact set. In particular, every non-negative upper semicon-

tinuous function on a compact set is bounded.

Theorem 1.1.9. (Dieudonne Interpolation Theorem). Let X be a paracompact

Hausdor¤ space, f : X ! R a lower semicontinuous and g : X ! R an upper

semicontinuous with f � g. Then there is an h 2 Cb(X;R) such that

f(x) � h(x) � g(x) for all x 2 X.

Proof. [Wil70, p. 159] (Outline) For each rational r, let

Gr = fx 2 X : f(x) < r < g(x)g:

Since X is paracompact, we can choose locally �nite open coverings fUr : r 2 Qg and
fVr : r 2 Qg of X such that

Vr � Ur � Gr:

De�ne hr : X ! [�1;1] by

hr(x) =

(
�1 if x 2 XnUr;

r if x 2 Vr:

Let

h(x) = inffhr(x) : r 2 Qg x 2 X:

Then, as in the proof of Urysohn�s Lemma, f is continuous on X: Further, f(x) �
h(x) � g(x) for all x 2 X. �

Note. The above theorem is interesting and famous that if f � g which are not
necessarily continuous, but there exists a continuous function h such that f � h � g.

Retracts of Topological Spaces
De�nition: ([KK01], p. 176) Let X be a topological space and A � X: Then A

is called a retract of X if there exists a continuous function r : X ! A such that

r(x) = x for all x 2 A: r is called a retraction of X into A.

Note. (1) Every retraction r : X ! A is onto; i.e., r(X) = A: [Since r : X ! A,

clearly r(X) � A. On the other hand, A = r(A) � r(X) since A � X. Hence

r(X) = A.]

(2) A retraction r : X ! A need not be one-one: [Suppose A 6= X, and choose

x 2 XnA. Then b = r(x) 2 A. So b 6= x (because b 2 A and x 2 XnA), but
r(b) = b = r(x). Hence r is not one-one.]
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Note. (1) Let X be a topological space. Then:

(i) X is a retract of X.

(ii) For each x0 2 X; fx0g is a retract of X.
Proof. (i) Clearly, the identity map i : X ! X, i(x) = x (x 2 X) is a retraction.
(ii) Clearly, the constant mapping r : X ! fx0g,r(x) = x0 (x 2 X) is continuous.

Further, r(x) = x0 for all x 2 fx0g:
Example. (1) Let X = Rn and A = B[0; 1] = fx 2 Rn : kxk � 1g; the unit ball

in Rn: Then A is a retract of X.
Solution. De�ne r : X ! A by

r(x) =

(
x if kxk � 1,
x
kxk if kxk > 1, x 2 X.

Then r is continuous with r(X) � A (since jjr(x)jj � 1 for all x 2 X) and r(x) = x

for all x 2 A:([Dug66], p.322). (In particular, [�1; 1] is a retract of R).
Example. (2) Sn(0; 1) = fx 2 Rn+1 : kxk = 1g is a retract of Rn+1nf0g:
Note that, in particular, (i) S

1
(0; 1); the unit circle, is a retract of R2nf0g;

(ii) S0(0; 1) = fx 2 R : jxj = 1g = f+1;�1g is a retract of Rnf0g:
Theorem 1.1.10. ([Dug66], p. 322). If X is Hausdor¤, and A � X a retract of

X, then A is closed in X:

Proof. Suppose A 6= A and let x 2 AnA: Then r(x) 6= x. Since X is Hausdor¤,

9 open sets U & V such that fxg � U; fr(x)g � V and U \V = ?: Note that
r(U) � V:

Since x 2 A and U is a neighborhood of x; U must contain a point y of A: Since

r(y) = y and r(U) � V; we have y 2 V: This implies that y 2 U \V and so U \V 6= ?;
a contradiction. �

Theorem 1.1.11. ([Dug66], p. 323). Let X be a topological space and A � X:

Then A is a retract of X i¤ each continuous map f : A ! Y has a continuous

extension g : X ! Y for any topological space Y:

Proof. (=)) Let r : X ! A be a retract of X. De�ne g : X ! Y by g = f � r.
Clearly g is continuous on X. Further, g is an extension of f : A! Y since g = f on

A. In fact, for any a 2 A, g(a) = f(r(a)) = f(a).
((=) Take Y = A and f = i : A ! A = Y: Then f is continuous and so, by

hypothesis, f : A! Y has a continuous extension g : X ! Y . Then r = g : X ! A is

a retraction of X (since r = g is continuous and, for any a 2 A, r(a) = g(a) = f(a) =
i(a) = a). �

Theorem 1.1.12. Let X = [a; b] is a closed subspace of R, and let A = fa; bg.
Then A is cannot be a retract of X.
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Proof. Let, if possible, r : X ! A be a retract of X. Since X is connected and r is

continuous, r(X) is connected i.e A = fa; bg is connected. But this is a contradiction,
since ffag; fbgg is a disconnection (or separation) of A. �

De�nition: Let X be a set or a topological space and f : X ! X a function.

Then a point x 2 X is called a �xed point of f if f(x) = x:
Theorem 1.1.13. (Fixed Point) Every continuous function f : [a; b]! [a; b] has

a �xed point.

Proof. If a = b, clearly f(a) = a, so a is a �xed point of f . Now suppose a < b,
and let g : [a; b]! [�1; 1] be a mapping de�ned by

g(x) =
2x� (a+ b)

b� a :

Then g is continuous and in fact a homeomorphism with g(a) = �1 and g(b) = 1.

Hence we may assume that a = �1 ; b = 1 i.e f : [�1; 1] ! [�1; 1] is a continuous
mapping. Let if possible f has no �xed point. Then f(x) 6= x for all x 2 [�1; 1]:De�ne
r : [�1; 1]! [�1; 1] by

r(x) =
x� f(x)
jx� f(x)j for all x 2 [�1; 1]:

Clearly (i) r is continuous,

(ii)

r(x) =

(
+1 if x� f (x) > 0;
�1 if x� f (x) < 0:

Therefore r([�1; 1]) = f�1; 1g: Hence r : [�1; 1] ! f�1; 1g is a retraction, which
contradicts the above theorem. Then 9 at least one x 2 [�1; 1] such that f(x) = x: �

Lemma 1.1.14. (Intermediate Value Theorem) Let f : R ! R be a continuous

function. Let p; q 2 f(R) with p < q: Then, for every y 2 R with p < y < q; there is

an x 2 R such that f(x) = y: �
Proof. Since R is connected and f : R ! R is continuous, f(R) is connected.

Let p; q 2 f(R) with a < b; and let p < y < q: Suppose there is no x 2 R such that
f(x) = y; i.e f(x) 6= y for all x 2 R: If

A = f(R) \ (�1; y) & B = f(R) \ (y;1);

then clearly fA;Bg is a disconnection of f(R): This is a contradiction. Then f(x) = y
for some x 2 R: �

Theorem 1.1.15. (Fixed Point) Let I = [0; 1] � R: Then every continuous
function f : I ! I has a �xed point.
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Proof. Let f : I ! I be a continuous function. If f(0) = 0 or f(1) = 1; then

f has 0 or 1 as its �xed points. Suppose f(0) 6= 0; f(1) 6= 1: Then f(0) > 0 and

f(1) < 1:De�ne a function g : I ! R by

g(x) = x� f(x) for all x 2 I:

Then clearly f is continuous. Further

g(0) = �f(0) < 0 and g(1) = 1� f(1) > 0

and so g(0) < 0 < g(1): By the intermediate value theorem, there is a point x 2 I
such that g(x) = 0: Then x� f(x) = 0 or f(x) = x and so x is a �xed point of f . �

1.2 Normed and Topological Vector Spaces

In this section, we consider all vector spaces over the �eld K (= R or C) with the usual
absolute value.

Notations. Let E be a vector space and A;B � E ; x 2 E; �; � 2 K. We denote

x�A = fx� a : a 2 Ag; A�B = fa� b : a 2 A; b 2 Bg;

�A = f�a : a 2 Ag; �A+ �B = f�a+ �b : a 2 A; b 2 Bg:

Note that �A+ �A " (�+ �)A, in general.
De�nition: Let E be a vector space over K: A function p : E ! R is called a

seminorm on E if it satis�es

(i) p(x) � 0 for all x 2 E;
(ii) p(x) = 0 if x = 0;

(iii) p(�x) = j�jp(x) for all x 2 E and � 2 K (absolutely homogeneous);

(iv) p(x+ y) � p(x) + p(y) for all x; y 2 E (subadditive).

Note. If p is a seminorm on a vector space E, it may happen that p(x) = 0 for

some x 6= 0. If p satis�es p(x) = 0 implies x = 0, then p is a norm on E and we write

jj:jj = p(:).
De�nition: (1) A vector space E with a norm k:k is called a normed vector

space or, simply, a normed space. Clearly, every normed space (E; k:k) is a metric
space with metric given by:

d(x; y) = kx� yk; x; y 2 E:

(2) A normed space E is called a Banach space if it is complete with respect to the
metric induced by the norm.
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De�nition: Let E be a vector space over the �eld K (R or C) and � a topology on
E. Then the pair (E; �) is called a topological vector space (TVS) if the following
conditions hold:

(TVS1) The operation of addition (x; y)! x+y of E�E ! E is jointly continuous;

i.e., given any x; y 2 E and any �neighborhood U of x + y in E; there exist � -

neighborhoods V of x and W of y in E such that V +W � U:
(TVS2) The operation of scalar multiplication (�; x)! �x of K�E ! E is jointly

continuous; i.e., given any x 2 E and � 2 K and any �neighborhood U of �x in E;

there exist a �neighborhood V of x in E and a neighborhood D of � in K such that

DV � U:
Examples. (1) Any normed space (E; k:k) is a TVS since the conditions (TVS1)

and (TVS2) follow, respectively, from:

(i) If x; y 2 E and xn ! x; yn ! y; then xn + yn ! x+ y in E:

(ii) If x 2 E, � 2 K and �n ! �; xn ! x; then �nxn ! �x in E:

(2) Any vector space E with the indiscrete topology � I = fE;?g is a TVS:
(3) A vector space E with the discrete topology �D = P (E) is not a TVS unless

E = f0g (since the scalar multiplication need not be continuous).
De�nition: Let E be a vector space over the �eld K (= R or C). A subset A of a

vector space E is called:

(i) absorbing if, for each x 2 E, there exists a number r = r(x) > 0 such that

x 2 �A for all � 2 K with j�j � r;

(ii) balanced if �x 2 A for all x 2 A and � 2 K with j�j � 1;
(iii) convex if tx+ (1� t)y 2 A for all x; y 2 A and 0 � t � 1:
Examples. (1) Every vector subspace A of E is balanced and convex.

(2) If (E; jj:jj) is a normed vector space, then, for each r > 0; both the open and
closed balls

B(0; r) = fx 2 E : jjxjj < rg; B[0; r] = fx 2 E : jjxjj � rg

are absorbing, balanced and convex subset of E.

Theorem 1.2.1. Every TVS (E; �) has a base of neighborhoods of 0 consisting
of closed, balanced and absorbing sets.

De�nition: A TVS (E; �) is called:
(i) a locally convex space (an LCS) if it has a base of neighborhoods of 0

consisting of convex sets (or equivalently its topology � can be de�ned by a family of

seminorms).

(ii) metrizable if � is induced by a metric d on E:
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Note. In general, E is locally convex < E is metrizable.

De�nition: Let E be a vector space over K:
(1) A function q : E ! R is called an F -norm on E if it satis�es

(S1) q(x) � 0 for all x 2 E;
(S2) q(x) = 0 i¤ x = 0;

(S3) q(�x) � q(x) for all x 2 E and � 2 K with j�j � 1;
(S4) q(x+ y) � q(x) + q(y) for all x; y 2 E (subadditive).

(2) A function q : E ! R q is called a p-norm on E, where 0 < p � 1, if it satis�es
(P1) q(x) � 0 for all x 2 E;
(P2) q(x) = 0 i¤ x = 0;

(P3) q(�x) = j�jp q(x) for all x 2 E and � 2 K;
(P4) q(x+ y) � q(x) + q(y) for all x; y 2 E.
Theorem 1.2.2. (Metrization Theorem) A TVS (E; �) is metrizable , it is

Hausdor¤ and has a countable base of � -neighborhoods of 0. In this case, � may be

de�ned by a metric d such that

(i) d(x+ z; y + z) = d(x; y) = d(x� y; 0) for all x; y; z 2 E;
(ii) d(�x; 0) � d(x; 0) for all x 2 E and � 2 K with j�j � 1;
hence � is given by an F -norm q, where q(x) = d(x; 0) for all x 2 E.
Theorem 1.2.3. Let X and Y be normed spaces. Then, for a linear mapping

T : X ! Y , TFAE:

(a) T is is continuous on X

(b) T is is continuous at 0 2 X
(c) T is bounded, i.e. there exists a constant M > 0 such that

jjT (x)jjY �M jjxjjX for all x 2 X:

De�nition: A mapping T : X ! Y is said to have a closed graph if its graph

G(T ) = f(x; Tx) : x 2 Xg

is a closed subset of X � Y ; or equivalently, if x� ! x 2 X and T (x�)! y 2 Y , then
y = T (x):

Note. If a mapping T : X ! Y is continuous, then T has a closed graph. Its

converse is:

Closed Graph Theorem. (Banach) Let X and Y be Banach spaces. If a linear

mapping T : X ! Y has closed graph, then T is continuous has a closed graph.

Theorem 1.2.4. Let (E; k:k) and (F; k:k) be normed spaces and CL(E;F ) the
vector space of all continuous linear mappings T : E ! F: Then CL(E;F ) is a normed



1. Functional Analysis Background 15

space with respect to the pointwise addition and scalar multiplication and the operator

norm:

kTk = supfkT (x)k : x 2 E; kxk � 1g; T 2 CL(E;F ):

If F is a Banach space, then CL(E;F ) is also a Banach space.

De�nition: Let E be a TVS or a normed space. Then any linear map f : E ! K
is called a linear functional on E. The set of all continuous linear functionals on E

is also a vector space, called the topological dual of E and is denoted by E�. Clearly,

E� = CL(E;K):
Theorem 1.2.5. ( Hahn-Banach) Let (E; jj � jj) be a normed space, M a vector

subspace of E and f a continuous linear functional on M . Then there exists a g 2 E�

(called the extension of f from M to E) such that

g = f on M and kgkE = kfkM = supfjf(y)j : y 2M; kyk � 1g.

Corollary 1.2.6. Let (E; jj � jj) be a normed space. Then, for any x0 6= 0 in E; there
exists a g 2 E� such that

g(x0) = jjx0jj and jjgjj = 1:

In particular, E� separates points of E (i.e. for any x 6= 0 in E; there exist a g 2 E�

such that g(x) 6= 0):

1.3 Weak Topologies on Normed Spaces

De�nition: Let (E; jj � jj) be a normed space.
(i) For any f 2 E�; the mapping pf : E ! R de�ned by

pf (x) = jf(x)j; x 2 E;

is a seminorm pf on E. The collection fpf : f 2 E�g of seminorms de�nes a locally
convex topology on E, called the weak topology and denoted by w = w(E;E�) or
�(E;E�):

(ii) Similarly, for any x 2 E; the mapping qx : E� ! R de�ned by

qx(f) = jf(x)j; f 2 E�:

is a seminorm qx on E�. Then the collection fqx : x 2 Eg of seminorms de�nes a
locally convex topology on E�, called the weak� topology on E� and denoted by

w� = w(E�; E) or �(E�; E):

Theorem 1.3.1. (a) w � jj � jj and (E;w) is Hausdor¤.
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(b) (E;w)� = (E; jj � jj)� :
(c) (Mazur) For any convex subset M of E, M is jj � jj-closed i¤ M is w-closed;

in particular, M
w
=M

jj�jj
.

(d) (Mackey) For any subset M of E, M is jj � jj-bounded i¤ M is w-bounded.

(e) If (E; �) is �nite-dimensional, then jj � jj = w.
De�nition: Let (E; jj:jj) be a normed space. A sequence fxng in E is said to be

weakly convergent to x 2 E if

f(xn)! f(x) for all f 2 E�:

Theorem 1.3.2. Let (E; jj � jj) be a normed space. If xn ! x weakly in E; then

fxng is norm bounded in E and

jjxjj � lim
n
inf jjxnjj:

De�nition: ([Sim63], p. 233) (1) Let (E; jj � jj) be an normed space. For any
x 2 E, we de�ne a map bx : E� �! K by

bx(f) = f(x); f 2 E�:
Then jbx(f)j = jf(x)j � jjf jj:jjxjj for all f 2 E�, and so bx 2 E�� = (E�)�:

(2) W de�ne the evaluation map � : E �! E�� by

�(x) = bx; x 2 E:
Clearly, bx = 0 implies that x = 0 and so � is one-one. Hence we may identify E with

a subspace bE = fbx : x 2 Eg of E��, so bE � E�� � (E�)�.
Theorem 1.3.3. ([Sim63], p. 233) If E is a Banach space, then:

(a) jjbxjj = jjxjj; x 2 E; hence � is an isometry.
(b) � : E �! �(E) = bE is a homeomorphism.

Re�exive Normed Spaces
De�nition: Let (E; jj � jj) be an normed space. If � : E �! E�� is onto (i.e. ifbE = E�� ), then E is called re�exive.

Note. If (E; jj � jj) is a re�exive normed space, then, since � : E �! E�� is an onto

isometry and E�� = L(E�;K) is complete, it follows that (E; jj � jj) is complete and
hence a Banach space.

Example. For 1 < p <1, the Banach spaces `p and Lp are re�exive. [If q > 1 is
such that 1p +

1
q = 1; then

(`�p)
� �= (`q)� �= `p and (L�p)� �= (Lq)� �= Lp:
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Theorem 1.3.4. (a) A Banach space E is re�exive i¤ every closed bounded subset
B of E is w-compact i¤ the closed unit ball fx 2 E : jjxjj � 1g of E is w-compact.

Hence any bounded sequence fxng in a re�exive Banach space has a w-convergent
subsequence.

(b) If E is re�exive, then every f 2 E� attains its maximum on the closed unit

ball of E (i.e., there exists x 2 E with jjxjj = 1 and jjf jj = jf(x)j).
Theorem 1.3.5. ([Sim63], p. 233) (Banach-Alaoglu theorem) If (E; jj � jj) is a

normed space, then the closed unit ball B�1 = ff 2 E : jjf jj � 1g of E� is w�-compact
in E�.

Theorem 1.3.6. [Sim63, p. 234] Let (E; jj � jj) is a Banach space, and let S� =
(B�1 ; w

�); a compact Hausdor¤ space. For any x 2 X; de�ne a continuous map bx :
S� ! K by bx(f) = f(x); f 2 S�:
Then the map � : x �! bx is an isometric isomorphism of E onto a closed vector

subspace of the Banach space C(S�).

Remark. By above theorem, any general Banach space (E; jj�jj) can be considered
as a closed vector subspace of the function space (C(X); jj � jj1), where X is a compact

Hausdor¤ space.

1.4 Hausdor¤Metric on cb(X) and its Properties

De�nition: Let A be a non-empty subset of a metric space (X; d). For any x 2 X,
we de�ne the distance from x to A by

d(x;A) := inffd(x; a) : a 2 Ag:

Lemma 1.4.1. Let A be a subset of a metric space (X; d). Then:
(a) d(x;A) � d(x; a) for all a 2 A.
(b) d(x;A) = 0, x 2 A.
(c) For any x; y 2 X;

j d(x;A)� d(y;A) j� d(x; y):

Proof. (a) By de�nition,

d(x;A) = inf
a2A

d(x; y) � d(x; a) for all y 2 A (1)
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(b)

x 2 A

() For each " > 0; the open ball B(x; ") contains a point a" (say) of A

() For each " > 0; d(x;A) � d(x; a") < "() d(x;A) = 0:

(c) Let x; y 2 X. Then, for any a 2 A; using (1),

d(x;A) � d(x; a) � d(x; y) + d(y; a); or d(x;A)� d(x; y) � d(y; a):

Taking infa2A

d(x;A)� d(x; y) � inf
a2A

d(y; a) = d(y;A);

or d(x;A)� d(y;A) � d(x; y): (2)

Similarly, interchanging x and y

d(y;A)� d(x;A) � d(y; x) = d(x; y);

or � [d(x;A)� d(y;A)] � d(x; y): (3)

By (2) and (3)

j d(x;A)� d(y;A) j� d(x; y): �

De�nition: Let (X; d) be a metric space and 2X the family of all non-empty subsets
of X. For any subsets A;B 2 2X , de�ne

d(A;B) := sup
a2A

d(a;B) = sup
a2A

inf
b2B
fd(a; b)g:

Notations. Let b(X) (resp., cb(X); k(X)) denote the family of all non-empty

bounded (resp., closed and bounded, compact) subsets of X. Clearly,

k(X) � cb(X) � b(X) � 2X :

The following lemma shows that the function d is only a pseude-metric on b(X).

Lemma 1.4.2. Let (X; d) be a metric space. Then for any A;B;C in b(X), we

have the following:

(i) d(A;B) � 0:
(ii) d(A;B) = 0 i¤ A � B; in particular, d(A;A) = 0:
(iii) d(A;B) � d(A;C) + d(C;B).
Proof. (i) This is clear.
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(ii) Assume d(A;B) = supa2A d(a;B) = 0. Then d(a;B) = 0 for all a 2 A. But
d(a;B) = 0 i¤ a 2 B. Hence A � B. Conversely, if A � B, then for any a 2 A, a 2 B;
and so we have d(a;B) = 0. Hence

d(A;B) = sup
a2A

d(a;B) = sup
a2A

f0g = 0:

In particular, since A � A, d(A;A) = 0.
(iii) For any a 2 A; b 2 B; c 2 C, clearly d(a; b) � d(a; c) + d(c; b). Hence

inf
b2B

d(a; b) � inf
b2B
fd(a; c) + d(c; b)g = d(a; c) + inf

b2B
d(c; b);

or, d(a;B) � d(a; c) + d(c;B):

By taking in�mum over C in both sides, we get

d(a;B) � inf
c2C

d(a; c) + inf
c2C

d(c;B)

� d(a;C) + sup
c2C

d(c;B) = d(a;C) + d(C;B):

Next, taking supremum over A, we get

sup
a2A

d(a;B) � sup
a2A

d(a;C) + d(C;B)g;

or d(A;B) � d(A;C) + d(C;B): �

Remark. We should mention here that, in general, d(A;B) 6= d(B;A); and so the
function d does not de�ne a metric on b(X). [For example, let X = R with the usual
metric d(x; y) = jx� yj; where x; y 2 R. Take A = [1; 2] and B = f3g. We have

d(A;B) = sup
a2A

f inf
b2B

ja� bjg = sup
a2[1;2]

ja� 3j = j1� 3j = 2;

d(B;A) = sup
b2B
f inf
a2A

jb� ajg = sup
b=3
f inf
a2[1;2]

j3� ajg = sup
b=3
fj3� 2jg = 1:]

De�nition: Let (X; d) be a metric space. The Hausdor¤ metric on cb(X), denoted
by dH , is the function cb(X)� cb(X)! R de�ned by

dH(A;B) := maxfd(A;B); d(B;A)g; A;B 2 cb(X):

Theorem 1.4.3. The function dH is a metric on cb(X).

Proof. (M1) Clearly dH(A;B) � 0 for all A;B 2 cb(X).
(M2) For A;B 2 cb(X), dH(A;B) = 0 i¤ d(A;B) = 0 and d(B;A) = 0 i¤A � B =

B and B � A = A; that is, A = B.
(M3) For A;B in cb(X), clearly dH(A;B) = dH(B;A) for all A;B 2 cb(X),
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(M4) For A;B;C 2 cb(X),

d(A;B) � d(A;C) + d(C;B) � dH(A;C) + dH(C;B):

Similarly, d(B;A) � dH(B;C) + dH(C;A). Combining these inequalities,

dH(A;B) = maxfd(A;B); d(B;A)g

� maxfdH(A;C) + dH(C;B); dH(B;C) + dH(C;B)g

= dH(A;C) + dH(C;B):

Therefore, dH is a metric on cb(X). �
Lemma 1.4.4. If (X; d) is a metric space, then, for A;B 2 cb(X) and x 2 X; we

have

jd(x;A)� d(x;B)j � dH(A;B):

Proof. For any y 2 B,

d(x;A) = inf
a2A

d(x; a) � d(x; y) + inf
a2A

d(y; a) � d(x; y) + d(B;A):

Taking infy2B,

d(x;A) � inf
y2B

d(x; y) + d(B;A) = d(x;B) + d(B;A);

or d(x;A)� d(x;B) � d(B;A) � dH(A;B): (1)

Exchange A and B to obtain that

d(x;B)� d(x;A) � d(A;B) � dH(A;B)

or � [d(x;A)� d(x;B)] � dH(A;B): (2)

Thus, by (1) and (2),

jd(x;A)� d(x;B)j � dH(A;B): �

De�nition: Let A be subset of a metric space (X; d). By �A, we mean the function
�A : X ! R de�ned by

�A(x) = d(x;A) for all x 2 X:

By Lemma 1.4.1,

j �A(x)� �A(y) j= jd(x;A)� d(y;A)j � d(x; y) for all x; y 2 X:

Then, for any " > 0;

j �A(x)� �A(y) j< " whenever x; y 2 X with d(x; y) < ":
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Hence the function �A is uniformly continuous on X and, in particular, continuous on

X:

Theorem 1.4.5. If a metric space (X; d) is complete , then (cb(X); dH) is also
complete.

Proof. Let fAng be a Cauchy sequence in (cb(X); dH) and let " > 0 be given,

there is N � 1 such that

dH(An; Am) < " for all n;m � N:

For any x 2 X and any n;m � N; we have by above lemma,

j �An(x)� �Am(y) j= jd(x;An)� d(x;Am)j � dH(An; Am) < ":

Therefore f�An(x)g is a Cauchy sequence in R. Now each �An : X ! R is continuous.
Since X and hence C(X;R) are complete, there is g 2 C(X;R) such that �An ! g in

C(X;R). Put A0 = fx 2 X : g(x) = 0g. Then A0 2 cb(X) and �An
dH! A0. Therefore,

(cb(X); dH) is complete. �
De�nition: Let X and Y be non-empty sets. Then a function ' : X ! 2Y is

called set-valued (or multi-valued) mapping or a carrier if, for each x 2 X, the
set '(x) is not empty.

Example. If a (single-valued) function f : X ! Y is onto, then, for each y 2 Y;
let

f�1(y) = fx 2 X : f(x) = yg � X:

Clearly the inverse map f�1 : Y ! 2X is a set-valued map.

We shall later study that ifM is a "proximinal" subset of a metric space X, then
the "proximity map" PM : X ! 2M is set-valued.

1.5 Strictly and Uniformly Convex Metric Linear Spaces

De�nition: A topological vector space (TVS) (E; �) is calledmetrizable if its topol-
ogy � is induced by a metric d on E. Further, � can also be given by an F -norm q,

where q(x) = d(x; 0) for all x 2 E. In this case, we write (E; �) = (E; q) and call it a
metric linear space.

De�nition: A complete metrizable TVS E is called an F -space.
For convenience, we may denote a metric linear space (X; d) by (X; q), where q is

an F-norm on X.

De�nition: [ANT77] A metric linear space (X; q) is called strictly convex if,
any r > 0 and x; y 2 X with q(x) � r, q(y) � r;

x 6= y ) q(
x+ y

2
) < r:
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Theorem 1.5.1. ([GK90], p. 34; [KK01], p. 138) Let (X; k:k) be normed space.
Then the following conditions are equivalent:

(a) X is strictly convex.

(b) For any x; y 2 X with kxk = 1, kyk = 1;

x 6= y ) kx+ yk < 2;

or equivalently, kx+ yk = 2) x = y.

(c) For any x; y 2 X,

kx+ yk = kxk+ kyk and y 6= 0 =) x = ty for some t � 0.

(d) For any x; y; z 2 X,

kx� yk = ky � zk = 1

2
kx� yk =) z =

x+ y

2
.

Example (1). (R; j � j) is strictly convex, where j � j is the usual absolute value.
Solution. Here q(x) = jxj; x 2 R. Let x; y 2 R and r > 0 with jxj � r; jyj �

r; x 6= y. We need to show that jx+ yj < 2r:
Case I: Suppose jxj < r or jyj < r, then

jx+ yj � jxj+ jyj < r + r = 2r:

Case II: Suppose jxj = r and jyj = r. Since x 6= y; either x = r; y = �r, or
x = �r; y = r. Hence in either case,

jx+ yj � j0j = 0 < 2r: �

Alternatively: Let x; y 2 X with jxj = 1, jyj = 1. Suppose x 6= y. Then either

x = 1; y = �1, or x = �1; y = 1. Hence in either case,

jx+ yj = j0j = 0 < 2: �

Example (2). (R; q), where

q(x) =
jxj

1 + jxj , x 2 R,

is strictly convex.

Solution. Let x; y 2 R and r > 0 with q(x) � r; q(y) � r; and x 6= y. we show
that q(x+y2 ) < r. If r = 1

q

�
x+ y

2

�
=

jx+y2 j
1 + jx+y2 j

< 1 = r:
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Suppose r 6= 1. Then

q(x) � r =) jxj
1 + jxj � r =) jxj � r + rjxj

=) jxj(1� r) � r =) jxj � r

1� r :

Similarly q(y) � r ) jyj � r
1�r . Since (R; j � j) is strictly convex. by above example,

jx+y2 j <
r
1�r , hence����x+ y2

����� r ����x+ y2
���� < r, or ����x+ y2

���� < r�1 + ����x+ y2
����� ;

hence q

�
x+ y

2

�
=

��x+y
2

��
1 +

��x+y
2

�� < r:
So (R; q) is strictly convex. �

Theorem 1.5.2. Every inner product space (X;<;>) is strictly convex.
Proof. Let x 6= y 2 X; kxk = 1; kyk = 1. We show that kx+y2 k < 1. Applying

parallelogram law:

kx+ yk2 + kx� yk2 = 2kxk2 + 2kyk2;

or, kx+ yk2 = 2kxk2 + 2kyk2 � kx� yk2

= 2 + 2� kx� yk2 < 4 (since x 6= y).

Hence kx+ yk < 2, and so (X;<;>) is strictly convex. �
Note. A normed space need not be strictly convex.
Example 1. Let X = R2 with the norm

kxk0 = jx1j+ jx2j; x = (x1; x2) 2 R2:

Then (R2; k:k0) is not strictly convex.
Solution. Take x = (1; 0); y = (0; 1), clearly x 6= y and

kxk0 = j1j+ j0j = 1; kyk0 = j0j+ j1j = 1;



x+ y2




0 = k(12 ; 12)k = 1

2
+
1

2
= 1.

This shows that (R2; k:k0) is not strictly convex.
Example 2. Let X = R2 with the norm

kxk00 = maxfjx1j; jx2jg; x = (x1; x2) 2 R2:

Then (R2; k:k00) is not strictly convex.
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Solution. Take x = (1; 1); y = (�1; 1), clearly x 6= y and

kxk00 = maxf1; 1g = 1; kyk00 = maxf1; 1g = 1;



x+ y2




00 = k(0; 1)k = maxf0; 1g = 1.

This shows that (R2; k:k00) is not strictly convex. �
Example 3. Let X = C[a; b] with the sup norm

kfk = sup
t2[a;b]

jf(t)j; f 2 C[a; b]:

Then (C[a; b]; k:k) is not strictly convex.
Solution. Consider f; g 2 C[a; b] given by

f(t) = 1 for all t 2 [a; b]
g(t) = t�a

b�a for all t 2 [a; b]:

Then
kfk = supt2[a;b] jf(t)j = supt2[a;b] 1 = 1
kgk = supt2[a;b] jg(t)j = supt2[a;b]

��� t�ab�a

��� = ��� b�ab�a

��� = 1:
Clearly f 6= g. Now

kf + gk = sup
t2[a;b]

jf(t) + g(x)j = sup
t2[a;b]

(1 +
t� a
b� a) = 1 +

b� a
b� a = 2:

Hence we have f; g 2 [a; b] such that kfk = 1; kgk = 1; f 6= g; but kf + gk = 2:

Therefore (C[a; b]; k:k) is not strictly convex. �
De�nition: [ANT77] A metric linear space (X; q) is called uniformly convex

(UC) if, given any two number r > 0; " > 0; there exists � = �(") > 0 such that for

any x; y 2 X with q(x) � r; q(y) � r

q(x� y) � " =) q

�
x+ y

2

�
< r � �. (�)

Note that, by (�), it is easy to guess or determine the value of �:
Example 1. (R; j � j) is uniformly convex, where j � j is the usual absolute value.
Solution. LetX = R, and let r > 0; " > 0:We show that there exists � = �(") > 0

such that for any x; y 2 R with jxj � r; jyj � r; jx� yj � "; we have

jx+ y
2

j < r � �:

We take � = "
4 . Now, �r � x � r; �r � y � r, and jx� yj � ".
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Case I: Suppose x� y � ". Then

x+ y � x+ (x� ") = 2x� " � 2r � " < 2r � "

2
= 2(r � "

4
);

x+ y � (y + ") + y = 2y + " � �2r + " > �2r + "

2
= �2(r � "

4
):

Hence

�(r � "

4
) <

x+ y

2
< r � "

4
; or

����x+ y2
���� < r � "

4
= r � �:

Case II: Suppose x� y � �". Then

x+ y � (y � ") + y = 2y � " � 2r � " < 2r � "

2
= 2(r � "

4
):

x+ y � x+ (x+ ") = 2x+ " � �2r + " > �2r + "

2
= �2(r � "

4
):

Hence

�(r � "

4
) <

x+ y

2
< r � "

4
; or

����x+ y2
���� < r � "

4
= r � �: �

Example 2. [ANT77] (R; q); where q(x) = jxj
1+jxj , x 2 R is uniformly convex.

Solution. Let X = R, and let " > 0, r > 0 be given. We show that there exists
� = �(") > 0 such that for any x; y 2 X, q(x) � r; q(y) � r;

q(x� y) � ") q(
x+ y

2
) < r � �:

First consider x; y 2 X with q(x) � r; q(y) � r and q(x� y) � ": Then

jxj
1 + jxj = q(x) � r ) jxj � r + rjxj

) jxj(1� r) � r ) jxj � r

1� r

Similarly q(y) � r gives jyj � r
1�r . Also jx�yj >

jx�yj
1+jx�yj = q(x�y) � ". Since (R;j � j)

is uniformly convex (by above example), so there exists �1 > 0 such that����x+ y2
���� < r

1� r � �1 =
r � �1(1� r)

1� r : (1)

Now

q

�
x+ y

2

�
=

jx+y2 j
1 + jx+y2 j

<
r � �1(1� r)

1� r + r � �1(1� r)

= r � [r � r � �1(1� r)
1� �1(1� r)

] = r � �1(1� r)2
1� �1(1� r)

:

Take

� =
�1(1� r)2
1� �1(1� r)

> 0 (since 1� �1(1� r) > 0):
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Then with this �; we have

q

�
x+ y

2

�
< r � �:

Hence (R; q) is uniformly convex. �
Note. The following example shows that a �nite-dimensional metric linear spaces

need not be uniformly convex.

Example 3. The set X = R2 with metric

d(x; y) = maxfjx1 � y1j; jx2 � y2jg; x = (x1; x2); y = (y1; y2) 2 R2:

is not uniformly convex.

Solution. Here q(x) = maxfjx1j; jx2jg, x = (x1; x2) 2 R2: Let x = (1; 1); y =

(1; 0). Then

q(x) = maxf1; 1g = 1; q(y) = maxf1; 0g = 1

q(x� y) = q((0; 1)) = maxf0; 1g = 1:

So taking r = 1; " = 1 we have for arbitrary � = �(") > 0, q(x) = r; q(y) = r;

q(x� y) = " but,

q

�
x+ y

2

�
= q

�
1 + 1

2
;
1 + 0

2

�
= q(1;

1

2
) = maxf1; 1

2
g = 1 = r:

Therefore (R2; q) is not uniformly convex. �
Theorem 1.5.3. Every uniformly convex metric linear space (X; q) is strictly

convex.

Proof. Let x; y 2 X with x 6= y; q(x) � r; q(y) � r. We need to show that

q(x+y2 ) < r. [Since x 6= y; q(x � y) > 0. Take " = q(x � y) > 0: Then, by uniformly
convexity, there exists � > 0 such that

q(
x+ y

2
) � r � � < r:]

Hence (X; q) is strictly convex. �
Recall that:

(i) A subset K of a �nite dimensional normed space X �= Kn is compact i¤ K is

closed and bounded.

(ii) Every compact subset A of a metric space (X; d) is both closed and bounded.

(iii) A subset A of a metric space (X; d) is compact i¤ it is both complete and

totally bounded.

De�nition: [ANT77] A metric linear space X is called totally complete if every
closed and bounded subset of X is compact.
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Examples. (1) Every �nite dimensional normed space (X; k:k) is totally complete.
This follows from the fact that a subset S of Rn is compact i¤S is closed and bounded.

(2). Every �nite dimensional p-normed space (X; k:kp) is totally complete.
Theorem 1.5.4. [ANT77] Any totally complete strictly convex metric linear space

(X; q) is uniformly convex.

Proof. Let " > 0; r > 0 be given. De�ne

S = f(x; y) 2 X �X : q(x) � r; q(y) � r; q(x� y) � "g;

the metric on X �X being

d1((x1; y1); (x2; y2)) = [fq(x1 � x2)g2 + fq(y1 � y2)g2]
1
2 :

Then (i) S is closed: To show that S � S, let (x; y) 2 S. Then there exists a sequence
f(xn; yn)g in S such that (xn; yn)! (x; y). Then xn ! x and yn ! y: Also

q(xn) � r; q(yn) � r; q(xn � yn) � ":

Letting n!1 and by continuity of q, we have q(x) � r; q(y) � r; q(x� y) � "; and
so (x; y) 2 S.

(ii) S is bounded: Clearly, by de�nition of S; S � B[0; r]�B[0; r]; so S is bounded
in X �X.

Next, (X �X; d1) is totally complete: Since (X; q) is a metric linear space, (X �
X; d1) is a metric linear space. Also if (X; q) is totally complete, then (X �X; d1) is
totally complete. Let K be a closed and bounded subset of X �X. We show that K
is compact. Since K is bounded, there exist r > 0 such that K � B[0; r]�B[0; r]. But
B[0; r] is closed and bounded subset of X, and since X is totally complete, B[0; r] is

compact. B[0; r]� B[0; r] is compact in X �X. Since K is closed subset of compact

set B[0; r]�B[0; r], then K is compact. Therefore X�X is totally complete. S, being

a closed and bounded subset of totally complete metric linear space is compact.

De�ne ' : S ! R by

'(x; y) = r � q(x+ y
2

) for all (x; y) 2 S:

Then

q(x) � r; q(y) � r; q(x� y) � " > 0

) q(x) � r; q(y) � r; x 6= y

) q

�
x+ y

2

�
< r (by strict convexity of q)

) r � q
�
x+ y

2

�
> 0 (1)
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Now to show that ' : X � X ! R is continuous on X � X (hence on S), suppose

f(xn; yn)g is a sequence in X �X such that (xn; yn)! (x; y) in X �X. Then xn ! x

in X and yn ! y in X and so by continuity of q

q

�
xn + yn
2

�
! q

�
x+ y

2

�
in R;

hence '(xn; yn) = r � q
�
xn + yn
2

�
! r � q

�
x+ y

2

�
= '(x; y):

Let � = inff'(x; y) : (x; y) 2 Sg: Since ' is continuous on compact set S, ' will attain
its in�mum on S. So there exist (x0; y0) 2 S such that � = inf '(x; y) = '(x0; y0) > 0
by (1). Now, for all (x; y) 2 S;

� � '(x; y) = r � q
�
x+ y

2

�
; or q

�
x+ y

2

�
� r � �:

Hence (X; q) is uniformly convex. �

1.6 Convexity of Open Balls in Metric Linear Spaces

In this section we present some results of T.S. Norfolk [Nor] and K. Sastry and S.

Naidu [SN79].

Let (E; d) be a metric space. One natural question which arises is the following:

What metric spaces have the property that all open balls in the space are convex ?

More precisely, we consider:

Question 1: If E is a linear space and d is a metric on E, is the open ball B(x; r)
is convex ?

In general, this is indeed false. To see this, we have:

Counter-example: ([Nor], p. 2-3) Consider the linear space E = R2, with the
metric

d(x; y) = d((x1; x2); (y1; y2)) =
p
jx1 � y1j+

p
jx2 � y2j:

Then B(x; r) is not convex for any x 2 E, r > 0.
Solution. Clearly, d is metric on E; which can be proved using the fact that

p
a+ b �

p
a+

p
b for a; b � 0:

Given any x = (x1; x2) 2 E and r > 0, choose r2

2 < � < r
2; and let y = (x1 + �; x2),

z = (x1; x2 + �):Then,

d(x; y) =
p
jx1 + �� x1j+

p
jx2 � x2j =

p
� <

p
r2 = r;

similarly d(x; z) < r



1. Functional Analysis Background 29

so that y; z 2 B(x; r). However,

d(x;
y + z

2
) = d((x1; x2); (x1 +

�

2
; x2 +

�

2
)

=

r
�

2
+

r
�

2
= 2

r
�

2
=
p
2� >

p
r2 = r;

so that y+z2 =2 B(x; r). Therefore B(x; r) is not convex. �
Given that our previous example shows that not all metrics generate convex open

balls, we are in a position to completely characterize those metrics which do so.

Theorem 1.6.1. ([Nor], p. 2-3) Let (E; d) be a metric linear space.Then the open
balls in X are convex i¤

d(x; ty + (1� t)z) � maxfd(x; y); d(x; z)g;

for all x; y; z 2 E and 0 � t � 1.
Proof. On one hand, suppose that the indicated condition holds. That is, given

any x 2 E, with y; z 2 B(x; r) and 0 � t � 1, we have

d(x; ty + (1� t)z) � maxfd(x; y); d(x; z)g < r;

so that ty + (1� t)z 2 B(x; r); the desired convexity condition.
On the other hand, if there exist x; y; z 2 E and 0 � t � 1 such that

d(x; ty + (1� t)z) > maxfd(x; y); d(x; z)g;

we may choose

maxfd(x; y); d(x; z)g < r < d(x; ty + (1� t)z);

from which y; z 2 B(x; r), but ty + (1 � t)z =2 B(x; r), meaning that the latter set is
not convex. �

Corollary 1.6.2. ([Nor], p. 5-6) If any of the following conditions holds on a
metric d on a linear space E, then Question 1 holds (i.e. the open balls of the metric

space are convex).

(1) d is the discrete metric.

(2) For each �xed x 2 E, d is a convex function on E. That is, for all y; z 2 E
and 0 � t � 1 :

d(x; ty + (1� t)z) � td(x; y) + (1� t)d(x; z)

(3) d satis�es the following conditions :

(a) d(x+ y; x+ z) = d(y; z) for all x; y; z 2 E.
(b) d(tx; ty) � td(x; y) for all x; y 2 E and 0 � t � 1:
(4) There exists a norm jj:jj on E such that d(x; y) = jjx� yjj for x; y 2 E:
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Proof. (1) Suppose that d is the discrete metric. Then, for any x 2 E, clearly

B(x; r) = fxg if 0 � r � 1

and B(x; r) = E if r > 1:

In either case, B(x; r) is clearly convex.

(2) Suppose that the indicated condition holds. Then, for any x; y; z 2 E and

0 � t � 1, we have

d(x; ty + (1� t)z) � td(x; y) + (1� t)d(x; z) � maxfd(x; y); d(x; z)g;

which, by Theorem 1.6.1 means that all open balls are convex.

(3) Suppose that the given pair of conditions holds. We will show that this implies

the conditions of (2). For any x; y; z 2 E and 0 � t � 1; we have

d(x; ty + (1� t)z) = d(x� x; ty + (1� t)z � x) (by a)

= d(x� x; ty + (1� t)z � x+ [tx� tx])

= d(0; t(y � x) + (1� t)(z � x))

� d(0; t(y � x)) + d(t(y � x); t(y � x) + (1� t)(z � x))

� td(0; y � x) + d(0; (1� t)(z � x)) (by b)

� td(x; y) + (1� t)d(0; z � x) (by a and b)

= td(x; y) + (1� t)d(x; z) (by a),

the desired result.

(4) Suppose that d is derived from a norm. Then, it clearly satis�es the condi-

tions of (3), since it is translation invariant, and also satis�es the stronger condition

d(tx; ty) = td(x; y) for all x; y 2 E and 0 � t � 1. �
Theorem 1.6.3. ([Nor], p. 7) If d is a metric on the linear space E such that all

open balls are convex, then the induced linear topological space is locally convex.

On the other hand, if the metric d induces a locally convex topology on the linear

space E, it is not necessarily true that all open balls are convex. In fact, it can be the

case that no open balls in a locally convex metric space are themselves convex. To see

this, consider the following:

Example 2. Let E = R2, and d be the metric of previous example. Then, none
of the open balls is convex, but the metric space is locally convex.

We next consider the convexity of closed sets in a TVS.

De�nition: Let X be a topological space and S be a subset of X. The boundary

of S is de�ned as

@S := S \ (X � S):
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For any x; y 2 X, x 6= y, we write

(x; y) = ftx+ (1� t)y : 0 < t < 1g:

From the following theorem it follows that a strictly convex metric linear space is

locally convex.

Theorem 1.6.4. [SN79] Let (X; �) be a topological vector space and S a non-
empty closed subset of X such that x; y 2 @S and x 6= y imply (x; y) \ S 6= ;. Then
S is convex.

Proof. Suppose S is not convex. Then there exist x; y 2 S, x 6= y such that

(x; y) \ (XnS) 6= ;. Let

A = ft 2 (0; 1) : tx+ (1� t)y 2 XnSg:

Clearly, A is non-empty. Next, A is open, as follows. [Let t0 2 A. Then

t0x+ (1� t0)y 2 XnS:

Since XnS is open, there exists an open set U in X such that

t0x+ (1� t0)y 2 U � XnS:

De�ne ' : (0; 1)! X by

'(t) = tx+ (1� t)y; t 2 (0; 1):

Since ' is continuous, there exists an open interval J contains t0 such that '(J) �
U � XnS; and so t0 2 J � A. Hence A is an open subset of R.] Let B be a component
of A (i.e, B is maximal connected subset of A). Then, there exist �; � 2 R such that
� < � and B = (�; �). Write z1 = �x + (1 � �)y and z2 = �x + (1 � �)y. Clearly
z1; z2 are distinct points of @S and (z1; z2) \ S = ; which contradicts the hypothesis.
�

Corollary 1.6.5. [SN79] Let (X; d) be a strictly convex metric linear space. Then
the balls in X are convex.

Proof. Let B[0; r] be a closed ball. For any x; y 2 @(B[0; r]) such that x 6= y, we
have d(x; 0) = r and d(y; 0) = r. Since X is strictly convex, d(x+y2 ; 0) < r: Clearly
x+y
2 2 (x; y) \ B[0; r]; and so (x; y) \ B[0; r] 6= ;: So, by above Theorem, the closed
ball B[0; r] is convex. Hence the open balls with center at 0 are also convex. Now, any

balls B[x; r]; B(x; r) can be expressed as translates of convex balls B[0; r], B(0; r):

B[x; r] = x+B[0; r]; B(x; r) = x+B(0; r):

This implies that both B[x; r] and B(x; r) are convex. �
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1.7 Best Approximations in Metric Linear Spaces

We recall that if M � (X; d) and x 2 X, the distance from x to M is de�ned by

d(x;M) := inffd(x;m) : m 2Mg

Then: (a) d(x;M) � d(x;m) for all m 2M .
(b) d(x;M) = 0, x 2M .
(c) For any x; y 2 X;

j d(x;M)� d(y;M) j� d(x; y):

De�nition: Let M be subset of a metric space (X; d). By �M , we mean the

function �M : X ! R de�ned by

�M (x) = d(x;M) for all x 2 X:

Lemma 1.7.1. The function �M : X ! R de�ned above is uniformly continuous
(hence continuous) on X

Proof. Clearly,

j �M (x)� �M (y) j= jd(x;M)� d(y;M)j � d(x; y) for all x; y 2 X:

Then, for any " > 0; take � = ", so that

j �M (x)� �M (y) j< " whenever x; y 2 X with d(x; y) < ":

Hence the function �M is uniformly continuous on X and, in particular, continuous

on X:

De�nition: Let M be a subset of a metric space (X; d). For each x 2 X, let

PM (x) := fz 2M : d(x; z) = d(x;M)g:

Then each z 2 M is called a point of best approximation of M from x (or nearest

point of M from x ).

Clearly PM (x) �M . Hence PM is a set-valued map from X into p(M); the power

set of M . Problems in Best Approximation Theory deal �rst to determine whether,

for each x 2 X, PM (x) is non-empty, or a singleton or empty. This depends on the
space X and also on the subset M .

By the following Lemma, the interesting case to �nd PM (x) is that x 2 X rM .
Lemma 1.7.2. Let M be a subset of a metric space (X; d) and x 2 X. Then

PM (x) =

(
fxg if x 2M
? if x 2M rM:
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Proof. Case I: Let x 2M . Then

PM (x) = fz 2M : d(x; z) = d(x;M) = 0g
= fz 2M : d(x; z) = 0g
= fz 2M : x = zg = fxg:

Case II: Let x 2M rM . Then

PM (x) = fz 2M : d(x; z) = d(x;M) = 0g
= fz 2M : d(x; z) = 0g
= fz 2M : x = zg = ?: �

Note. 1. IfM � (X; k : k) a normed space, then d(x;M) = inffk x�y k: y 2Mg.
2. If M is closed, then M =M , so d(x;M) = 0, x 2M .
3. By above lemma, the interesting case to �nd PM (x) is that x 2 X rM: (or

x 2 X rM if M is closed).

De�nition: Let M be a subset of a metric space (X; d). Then

1. M is called a proximinal set (or an existence set,or an E-set) if PM (x) 6= ?
for each x 2 X.

2. M is called a Chebyshev set (or a unique existence set or UE-set) if PM (x)
is a singleton set for each x 2 X.

3. M is called a semi-Chebyshev set (or a uniqueness set,or an U -set) if PM (x)
contains at most one element for each x 2 X.

Example 1. Let X = R2 with metric

d(x; y) =
p
(x1 � y1)2 + (x2 � y2)2; x = (x1; x2); y = (y1; y2) 2 R2;

and let M = x-axis = f(�; 0) : � 2 Rg: Then M is Chebyshev and hence proximinal.

Solution. For any x = (p; q) 2 X;

d(x;M) = infm2M d(x;m)

= inf�2R
p
(p� �)2 + (q � 0)2 = q:

Next,
PM (x) = fz 2M : d(x; z) = qg

= f(�; 0) 2M :
p
(p� �)2 + q2 = qg

= f(�; 0) 2M : jp� �j = 0g
= f(�; 0) 2M : � = pg
= f(p; 0)g:

Thus M is Chebyshev, hence proximinal. �
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Example 2. Let X = R2, with metric

d0(x; y) = maxfjx1 � y1j; jx2 � y2jg; x = (x1; x2); y = (y1; y2) 2 R;

and let M = x-axis= f(�; 0) : � 2 Rg: Then M is proximinal, but not Chebyshev.

Solution. For any x = (p; q) 2 X;

d(x;M) = infm2M d
0(x;m)

= inf�2Rmaxfjp� �j; jq � 0jg = jqj:

Further,

PM (x) = fz 2M : d0(x; z) = jqjg
= f(�; 0) 2M : maxfjp� �j; jqjg = jqjg
= f(�; 0) 2M : jp� �j � jqjg
= f(�; 0) 2M : �jqj � �� p � jqjg
= f(�; 0) 2M : p� jqj � � � p+ jqjg
= the line segment joining (p� jqj,0) and (p+ jqj,0).

Clearly, PM (x) is non-empty, but not necessarily a singleton. Thus M is proximinal,

but not Chebyshev. �
Example 3. Let X = R with the usual metric d(x; y) = jx�yj. TakeM = (�1; 1);

an open interval. Let x = 2. Then

d(x;M) = d(2;M) = inf
m2M

j2�mj = 1:

Hence,
PM (x) = fz 2M : d(x; z) = d(x;M) = 1g

= fz 2 (�1; 1) : j2� zj = 1g
= ? (since 1 =2 (�1; 1) =M):

Therefore M is not proximinal, hence not Chebyshev; however, M is semi-Chebyshev.

De�nition: Let K be a subset of a metric space (X; d). Then K is called a

bounded set if there exists c > 0 such that d(x; y) � c for all x; y 2 K (i.e., if its

diameter �(K) = supx;y2K d(x; y) <1):
Theorem 1.7.3. Let M be a subset of a metric space (X; d). Then for each

x 2 X; PM (x) is bounded and closed subset of X.
Proof. PM (x) is a bounded: Let z1; z2 2 PM (x): If d(x;M) = 
, then d(x; z1) =

d(x; z2) = 
. Now

d(z1; z2) � d(x; z1) + d(x; z2)

� 
 + 
 = 2
 (constant),
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since z1; z2 2 PM (x) are arbitrary, sup d(z1; z2) � 2
. Hence PM (x) is a bounded set.
PM (x) is a closed: To show that PM (x) � PM (x), let z 2 PM (x): Then there exist

a sequence fzng � PM (x) such that zn ! z: Clearly,

d(x; zn) = d(x;M) = 
 for all n � 1 (since zn 2 PM (x)):

Now, using continuity of d,

d(x; z) = d(x; lim
n!1

zn) = lim
n!1

d(x; zn) = lim
n!1


 = 
;

so z 2 PM (x). Hence PM (x) � PM (x). Thus PM (x) is a closed set. �
Theorem 1.7.4. Let M be a proximinal subset of a metric space X. Then M is

closed.

Proof. Suppose M is not closed. Then there exist a sequence fzng in M such

that zn ! x and x =2 M . Then d(x;M) � d(x; zn) ! 0, so that d(x;M) = 0. But

d(z; x) > 0 for each z 2M , since x =2M . Therefore

PM (x) = fz 2M : d(x; z) = d(x;M) = 0g = ?:

This contradicts PM (x) 6= ?. [Another Proof. Let x 2M: Then d(x;M) = 0. Since
PM (x) 6= ?,

PM (x) = fz 2M : d(x; z) = d(x;M) = 0g = fxg:

So x 2 PM (x) �M:] �
De�nition: (1) Let X be a vector space over K. For any x; y 2 X, we de�ne a

set

[x; y] = f(1� t)tx+ ty : t 2 R; 0 � t � 1g;

called the line segment joining x and y.
(2) Let X be a vector space over K and A � X. Then A is convex if [x; y] � A

for all x; y 2 A:
Examples. (1) For any vector space X , the sets ?; X, and singletons fxg are

convex.

(2) Both the open and closed ball in a normed space X are convex.

(3) The intersection of any collection of convex sets in a vector space X is convex.

Theorem 1.7.5. Let X be a normed space. If M is a convex subset of X, then

PM (x) is also convex for each x 2 X.
Proof. Let x 2 X, suppose that z1 and z2 are in PM (x) and 0 � t � 1. If
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y = �z1 + (1� t)z2, then y 2M and

d(x;M) � ky � xk

= kt(z1 � x) + (1� t)(z2 � x)k

� kt(z1 � x)k+ k(1� t)(z2 � x)k

� tkz1 � xk+ (1� t)kz2 � xk

= td(x;M) + (1� t)d(x;M) = d(x;M);

or 
 � k y � x k� 
 or k y � x k= 
;

Hence y = tz1 + (1� t)z2 2 PM (x). Therefore PM (x) is convex. �
Recall that: If K is subset of a metric space (X; d); then K is compact i¤ every

sequence fxng1n=1 in K has a convergent subsequence with limit in K.

Theorem 1.7.6. Any compact subset M of a metric space (X; d) is proximinal.

Proof. Let x 2 X and let 
 = d(x;M). Since 
 = inffd(x; y) : y 2 Mg so there
exist a sequence fd(x; ym) : ym 2Mg such that

lim
m!1

d(x; ym) = 
: (1)

Here fymg is called a minimizing sequence in M . Since M is compact, fymg1m=1 has
a convergent subsequence fymig1i=1 with limi!1 ymi = z 2 M . Now by continuity of
metric d,

lim
i!1

d(x; ymi) = d(x; lim
i!1

ymi) = d(x; z) (2)

Then by (1) and (2) the sequence fd(x; ym)g and its subsequence fd(x; ymi)g both
converge in R, so they must have the same limit. Hence d(x; z) = 
. Therefore

z 2 PM (z); and so PM (x) 6= ?. Thus M is proximinal. �
Remarks. (1) If fymg1m=1 is a Cauchy sequence in a metric space (X; d) and if

fymg1m=1 has a convergent subsequence fymig1i=1 with limi!1 ymi = y 2 X, then it
follows that fymg1m=1 is convergent and limi!1 ym = y.

(2) If the sequence fymg1m=1 is not Cauchy, then the above need not be true: e.g.,
the sequence fymg1m=1 = f(�1)mg in R has convergent subsequence f1; 1; � � � g and
also f�1;�1; � � � g, but fymg is not convergent.

Theorem 1.7.7. Any �nite dimensional vector subspace M of a normed space

(X; k:k) is proximinal.
Proof. let x 2 X, and 
 = d(x;M), we show that PM (x) 6= ?. there exist a

minimizing sequence fymg �M such that

kx� ymk ! 
 (1)
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we now show that fymg is a bounded sequence. Since fkx � ymkg is a convergent
sequence in R and hence bounded, there exist a constant c > 0 such that

kx� ymk � c for all m � 1:

Then, for any m � 1

kymk = kym � x+ xk � kym � xk+ kxk � c+ jjxjj (constant):

Hence fymg is bounded in M .
Since M is �nite dimensional, it has the Bolzano-Weierstrass property (i.e every

bounded sequence in M has a convergent subsequence), so fymg has a convergent
subsequence fymig with limi!1 ymi = z 2 X. Since M, being a �nite dimensional
vector subspace of X, is closed, so limi!1 ymi = z 2M . Now

kx� zk = kx� lim
i!1

ymik = lim
i!1

kx� ymik: (2)

Then by (1) and (2) the sequence fkx � ymkg and its subsequence fkx � ymikg both
converge, so they must have the same limit. Hence, kx�zk = 
. Therefore z 2 PM (x);
and so PM (x) 6= ?. Thus M is proximinal. �

Theorem 1.7.8. [ANT77] Every proximinal convex subset M of a strictly convex

metric linear space (X; q) is Chebyshev.

Proof. Let x 2 X rM . Since M is proximinal, it is closed and PM (x) 6= ?.
So 
 = d(x;M) > 0. To show that PM (x) is singleton, let z; z0 2 PM (x). Then

q(x� z) = 
; q(x� z0) = 
: Since M is convex, z+z
0

2 2M . Now


 = d(x;M) � q(x� z + z
0

2
) = q(

(x� z) + (x� z0)
2

):

By strict convexity of X; x� z = x� z0, or z = z0. Thus M is Chebyshev. �
Corollary 1.7.9. [ANT77] Any non-empty convex subset of strictly convex metric

linear space is semi-Chebyshev.

De�nition: Let M be a subset of any metric space X. Then M is called ap-

proximatively compact, if for any x 2 X and any sequence fxng in M , the condition
limn!1 d(x; xn) = d(x;M) implies that fxng has a subsequence fxnkg convergent to
a point in M .

Recall that if M is any subset of a metric space (X; d), then M is compact i¤

every sequence fxng in M has convergent subsequence with limit in M . Hence if M

is compact, then M is approximatively compact; but the converse is not true.

Theorem 1.7.10. [ANT77] Let X be a uniformly convex metric linear space.

Then any complete convex subset M of X is approximatively compact.
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Proof. Let x 2 X and fxng �M such that limn!1 q(x� xn) = 
 = d(x;M), we
show that fxng is Cauchy sequence. Let " > 0, take r = 
 > 0. Take � > 0 as in the
de�nition of uniformly convex of X. Since q(x�xn)! 
 = r in R, taking "0 = �, then
there exists an integer N � 1 such that for all n � N

jq(x� xn)� 
j < "0 = �; or � � < q(x� xn)� 
 < �; or q(x� xn) < 
 + �: (1)

Now, �x any n;m � N . Then, by(1),

q(x� xn) < 
 + �; q(x� xm) < 
 + �: (2)

Since M is convex, xn+xm2 2M and so


 = d(x;M) � q
�
x� xn + xm

2

�
: (3)

By uniformly convex of (X; q), (2) and (3), we have

q[(x� xn)� (x� xm)] < ";

or q(xn � xm) < " for all n;m � N ,

so fxng is a Cauchy sequence in M . since M is complete xn ! y 2M . Hence we have
fxng as a subsequence of fxng which converges in M . Thus M is approximatively

compact. �
Corollary 1.7.11. [ANT77] Let (X; q) be a uniformly convex F -space. Then any

closed convex subset M of X is approximatively compact.

Proof. Here M is a closed subset of complete metric space X and so M is also

complete. Hence, by above Theorem, M is approximatively compact. �
Corollary 1.7.12. [ANT77] Let (X; d) be a uniformly convex metric linear space.

Then any complete convex subset M of X is proximinal (and hence Chebyshev).

Proof. Let x 2 X, and 
 = d(x;M). By de�nition of d(x;M), there exist a

minimizing sequence fymg in M such that

d(x; ym)! 
: (1)

By Theorem 1.7.10, M is approximatively compact, so fymg has subsequence fymk
g

such that

lim
k!1

ymk
= y 2M:

Now

d(x; y) = d(x; lim
k!1

ymk
) = lim

k!1
d(x; ymk

): (2)

Then by (1) and (2) the sequence fd(x; ym)g and its subsequence fd(x; ymk
)g both

converge, so they must have the same limit d(x; y) = 
 = d(x;M). Then y 2 PM (x),
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hence M is proximinal set. Since (X; d); being uniformly convex, is strictly convex,

M is Chebyshev. �
Corollary 1.7.13. [ANT77] Let (X; q) be a uniformly convex F -space. Then any

closed convex subset M of X is proximinal (and hence Chebyshev).

Proof. Here M is a closed subset of complete metric space X and so M is also

complete. Hence, by above corollary , M is proximinal (and hence Chebyshev). �
Remark. It is well-known that every uniformly convex Banach space is a re�exive

space. Therefore, the following results extends the proximinality of vector subspaces

from uniformly convex to re�exive spaces.

Theorem 1.7.14. Let (X; jj � jj) be a re�exive Banach space. Then any closed
vector subspace M of X is proximinal.

Proof. Let x 2 XnM , and 
 = d(x;M). By de�nition of d(x;M), there exist a
minimizing sequence fymg in M such that

lim
m!1

jjx� ymjj ! 
: (1)

Since X is re�exive, its closed vector subspace M is also re�exive. Since fymg is a
bounded sequence in M , so it has subsequence fymk

g such that

ymk
! y weakly in M:

Then clearly x � ymk
! x � y weakly in X; i.e. f(x � ymk

) ! f(x � y) in R for all
f 2 X�: Now


 = d(x;M) � jjx� yjj = jj[x� yjj = supfj([x� y)(f)j : f 2 X�; jjf jj � 1g

= supfjf(x� y)j : f 2 X�; jjf jj � 1g = supflim
k
jf(x� ymk

)j : f 2 X�; jjf jj � 1g

� supflim
k
inf jjf jj � jjx� ymk

jj : f 2 X�; jjf jj � 1g � lim
k
inf jjx� ymk

jj

= lim
k
jjx� ymk

jj = 
;

i.e., d(x; y) = 
 = d(x;M), and so y 2 PM (x). Hence M is proximinal set. �
Theorem 1.7.15. [Nar79] A convex boundedly weakly compact set M in a strictly

convex metric linear space (X; d) is proximinal, and hence Chebyshev.

Proof. Let M be a convex boundedly weakly compact subset of X and x an

arbitrary point of X. Then choose a sequence fyng in M such that

lim
n!1

d(yn; x) = d(x;M): (1)

Now, for any n � 1;
d(yn; 0) � d(yn; x) + d(x; 0): (2)

Since the sequence fd(yn; x)g; being convergent in R, is bounded, it follows from (2)

that the sequence fyng is bounded. By assumption, fyng has a subsequence fynkg



1. Functional Analysis Background 40

such that ynk is weakly convergent to z (say) in M . We claim that d(x; z) = d(x;M).

It is su¢ cient to prove that, for any " > 0, d(x; z) � d(x;M) + ". Since X is strictly

convex, the closed ball B = B[x; d(x;M) + "] is convex (see last section). By the

Mazur Theorem, the ball B; being convex and closed, is weakly closed. By (1), there

exists N � 1 such that, for all k � N;

jd(ynk ; x)� d(x;M)j � " or that d(ynk ; x) � d(x;M) + ":

Therefore, fynk : k � Ng � B: Since ynk ! z weakly and B is weakly closed, we have

z 2 B, i.e, d(z; x) � d(x;M) + ".] Thus d(x; z) = d(x;M); and so z 2 PM (x): �
Properties of the Proximity Map
Recall that: if X is a Hibert space and C a nonempty closed convex subset of X,

then C is a Chebyshev set in X. Conseqyently, the proximity mapping PC : X ! C

is a well-de�ned single-valued map on X.

Theorem 1.7.16. ([Deu01], p. 43, 72-73; [KK01], p. 135-136) Let X be a Hibert

space and C a nonempty closed convex subset of X. Then the proximity mapping

PC : X ! C has the following properties:

(1) P 2C = PC , i.e. PC(PC(x)) = PC(x) for all x 2 X:
(2) For any x 2 X;all z 2 C,

z = PC(x) i¤ < x� z; z � y >� 0 for all y 2 C.

(3) jjPC(x)� PC(y)jj2 �< x� y; PC(x)� PC(y) > for all x; y 2 X:
(4) < x� y; PC(x)� PC(y) >� 0 for all x; y 2 X:
(5) jjPC(x)� PC(y)jj � jjx� yjj for all x; y 2 X (nonexpansive).

Proof. (1) Note that PC(y) = y for all y 2 C. Now, for any x 2 X, PC(x) 2 C,
and so PC(PC(x)) = PC(x).

(2) ()) Suppose z = PC(x), but there exists some y 2 C such that

< x� z; z � y > < 0, or < x� z; y � z > > 0: (1)

Since C is convex, for each 1 < t < 1, yt = ty + (1� t)z) = z + t(y � z) 2 [z; y] � C.
Since z = PC(x),

jjx� zjj � jjx� ytjj: (2)
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Now,

jjx� ytjj2 = < x� yt; x� yt >

= < x� ty � (1� t)z; x� ty � (1� t)z >

= < x� z � t(y � z); x� z � t(y � z) >

= < x� z; x� z > + < x� z;�t(y � z) >

+ < �t(y � z); x� z > + < �t(y � z);�t(y � z) >

= jjx� zjj2 � 2t < x� z; y � z > +t2jjy � zjj2

= jjx� zjj2 � t[2 < x� z; y � z > �tjjy � zjj2

< jjx� zjj2 (using (1) and for t su¢ ciently small),

and so jjx� ytjj < jjx� zjj, which contradicts (2).
On the other hand, Suppose < x�z; z�y >� 0 for all y 2 C. Then for any y 2 C,

jjx� zjj2 = < x� z; x� z >=< x� z; x� y + y � z >

= < x� z; x� y > + < x� z; y � z >

= < x� z; x� y > � < x� z; z � y >

� < x� z; x� y > (since < x� z; z � y >� 0)

� jjx� zjj:jjx� yjj;

that is, jjx� zjj � jjx� yjj for all y 2 C, and so z = PC(x).
(3) For all x; y 2 X,

< x� y; PC(x)� PC(y) >

= < (x� PC(x)) + (PC(x)� PC(y)) + (PC(y)�y); PC(x)� PC(y) >

= < x� PC(x); PC(x)� PC(y) > + < PC(x)� PC(y); PC(x)� PC(y) >

+ < PC(y)� y; PC(x)� PC(y) > (using linearity in the �rst component)

= < x� PC(x); PC(x)� PC(y) > +jjPC(x)� PC(y)jj2 +

< y � PC(y); PC(y)� PC(x) >

� 0 + jjPC(x)� PC(y)jj2 + 0 (by (2) taking z = PC(x) and z = PC(y)):

= jjPC(x)� PC(y)jj2

(4) For all x; y 2 X, by (3),

< x� y; PC(x)� PC(y) >�jjPC(x)� PC(y)jj2 � 0:
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(5) For all x; y 2 X, by (3),

jjPC(x)� PC(y)jj2 � < x� y; PC(x)� PC(y) >

� jjx� yjj:jjPC(x)� PC(y)jj (by Cauchy-Shwartz inequality)

hence jjPC(x)� PC(y)jj � jjx� yjj. �



Chapter 2

Classical Fixed Point Theorems
in Metric and Banach Spaces

In this chapter we consider several famous and useful �xed point theorems. These

include �xed point theorem for contraction mappings, �xed point theorems of Ba-

nach, Brouwer, Schauder, Tychono¤-Schauder, Markov-Kakutani and Kannan and

�xed point theorem for contraction multivalued mappings.

2.1 Banach Contraction Principle and Related Fixed The-
orems

In this section we present some important results of Banach (1922), Edelstein (1962),

Caristi (1976) and Kirk (1965) in �xed point theory.

Banach�s Contraction Mappings Principle is remarkable in its simplicity, yet it is

perhaps the most widely applied �xed point theorem in all of analysis. This is because

the contractive condition on the mapping is easy to test and it requires only a complete

metric space for its setting. Although the basic idea was known to others earlier, the

principle �rst appeared in explicit form in Banach�s 1922 thesis [Ban22], where it was

used to establish the existence of a solution to an integral equation.

De�nition: Let X be a set and K � X, and let T : K ! K be a function, called

a self-mapping on K. An element x0 2 K is called a �xed point of T if T (x0) = x0,
or, equivalently, x0 is a solution of the equation g(x) = T (x)� x = 0.

We denote by Fix(T ) the set of all �xed points of T in K. In general, Fix(T ) may

be an empty set.

Example. Let X be the two-element set fa; bg. The function T : X ! X, de�ned

by T (a) = b and T (b) = a has no �xed point.

43
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Remarks. (1) Note that the de�nition of a �xed point requires no structure on
either the set K or the function T .

(2) Geometric interpretation of Fix(T ) is:

Fix(T ) = fx 2 X : T (x) = xg

= fx 2 X : y = T (x) and y = xg

= fx 2 X : y = T (x)g \ fx 2 X : y = xg

= common solution of the equations y = T (x) and y = x.

In particular, if X = R and f : R! R is function (e.g. f(x) = sinx or cosx or x2),
then Fix(f) is the set of all x 2 R such the graphs of y = f(x) and y = x intersect.

Problem: The main problem in Fixed Point Theory is to determine: Under what

conditins on X;K and T;

(a) Fix(T ) 6= ?, or Fix(T ) is a sigleton (i.e., T has a unique �xed point in K).
(b) If K is a convex subset of a vector space (or a topological vector space) X, is

Fix(T ) also convex ?

Now we de�ne various types of "contractive" mappings used in Fixed Point Theo-

rey.

De�nition: Let (X; d) be a metric space. A mapping (or a function) T : X ! X

is called:

(i) a contraction if there exists a real number 0 � � < 1 such that

d(T (x); T (y)) � �:d(x; y) for all x; y 2 X.

(ii) contractive if

d(T (x); T (y)) < d(x; y) for all x; y 2 X.

(iii) nonexpansive if

d(T (x); T (y)) � d(x; y) for all x; y 2 X.

(iv) K-Lipschitz if there exists a real number K � 0 such that

d(T (x); T (y)) � K:d(x; y) for all x; y 2 X.

Note. (1) T is a contraction ) T is contractive ) T is nonexpansive , T is

1-Lipschitz:

d(T (x); T (y)) � �:d(x; y) < d(x; y) � d(x; y) for all x; y 2 X.

(2) T is K-Lipschitz with 0 � K < 1 means T is a contraction.
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(3) T is K-Lipschitz ) T is uniformly continuous ) T is continuous.

Proof of (3). Suppose T is K-Lipschitz with K � 0, and let " > 0. First suppose
K > 0. Then taking � = "

K , we have

d(T (x); T (y)) � K:d(x; y) < K: "
K
= " for all x; y 2 X with d(x; y) < �.

If K = 0, then taking any � > 0, we have

d(T (x); T (y)) � K:d(x; y) = 0 < " for all x; y 2 X with d(x; y) < �.

Hence in each case, T is uniformly continuous. (Note that if K = 0, then clearly

T (x) = T (y)) for all x; y 2 X, and so T is a constant function, which is trivially

uniformly continuous.) �
(4) By (1) and (3), clearly every non-expansive mapping, hence every contractive

or contraction mapping, is continuous.

Example. Let f : R! R be a di¤erentiable real function. If there is a real number
� < 1 for which the derivative f

0
(x) satis�es���f 0(x)��� � � for all x 2 R:

Then f is a contraction with respect to the usual metric on R.
Solution. Let x; y 2 R and without loss of generality assume x < y. By the

Mean Value Theorem, there exists � 2 (x; y) such that f(y)� f(x) = f 0(�)(y� x) and
therefore

jf(y)� f(x)j =
���f 0(�)��� j(y � x)j � � j(y � x)j :

Hence f is a contraction on (a; b).

De�nition: Let (X; d) be a complete metric space. For any �xed x 2 X, the
sequence fTn(x)g1n=0 de�ned by

fTn(x)g1n=0 = fx; T (x); T 2(x); T 3(x); ::::g:

is called the Picard iteration of x under T .
Theorem 2.1.1. (Banach Contraction Principle) [Ban22] Let (X; d) be a complete

metric space and let T : X ! X be a contraction mapping. Then T has a unique �xed

point x0. In fact, each x 2 X, the Picard sequence fTn(x)g1n=0 converges to a point
x0 (say) in X which turns out to be the unique �xed point of T .

Proof. (I) Since T is a contraction, 9 an � 2 [0; 1) such that

d(T (x); T (y)) � �d(x; y) 8x; y 2 X: (1)

Take any x 2 X and consider fTn(x)g1n=0.
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(II) fTn(x)g is a Cauchy sequence in X: First we prove that for m < n where m;n

are positive integers ;

d(T m(x); T n(x)) � �m

1� �d(x; T (x)) 8x 2 X:

By (1),

d(T (x); T 2(x)) � �d(x; T (x))

For any integer k � 1;

d(T k(x); T k+1(x)) � �d(T k�1(x); T k(x))

� �:�d(T k�2(x); T k�1(x))

� ::::::::::

� �:�:::�(k-time)d(T k�k(x); T k�(k�1)(x))

= �kd(x; T (x)) (2)

Now, if m < n,

d(Tm(x); Tn(x)) � d(Tm(x); Tm+1(x)) + d(Tm+1(x); Tm+2(x))

+::::::::+ d(Tn�1(x); Tn(x))

� �md(x; T (x)) + �m+1d(x; T (x)) + :::+ �n�1d(x; T (x))

= (�m + �m+1 + :::+ �n�1)d(x; T (x)) [by (2)]

� (�m + �m+1 + :::+ �n�1 + �n + �n+1 + ::::)d(x; T (x))

=
�m

1� �d(x; T (x)):

Since 0 � � < 1; lim
m!1

�m = 0: Hence

lim
m!1

�m

1� �d(x; T (x)) = 0;

i.e., given " > 0;9 an N � 1 such that
��� �m1��d(x; T (x))� 0��� = �m

1��d(x; T (x)) < " 8
m � N: So

d(Tm(x); Tn(x)) < " 8m;n � N:

Thus fTn(x)g is Cauchy in X.
(III) Since X is complete,

lim
n!1

Tn(x) = x0 (say) in X.

Now, since T is continuous,

T (x0) = T ( lim
n!1

Tn(x)) = lim
n!1

Tn+1(x) = lim
n!1

Tn(x) = x0:
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Thus x0 is a �xed point of T .

(IV) Uniqueness of x0: From (III), T (x0) = x0. Suppose also that 9 y0 2 X
such that T (y0) = y0. Then

d(x0; y0) = d(T (x0); T (y0))

< �d(x0; y0)

< d(x0; y0) (since � < 1),

a contradiction. Hence x0 is a unique �xed point of T . �
Examples
Example (1) Let X = [0; 14 ], a complete metric space and T : [0;

1
4 ] ! [0; 14 ] such

that

T (x) = x2, x 2 [0; 1
4
].

Then: (i) T is a contraction;

(ii) T has a unique �xed point.

Solution. (i) For any x; y 2 [0; 14 ],

d(Tx; Ty) = jTx� Tyj =
��x2 � y2�� = jx+ yj :jx� yj

� (jxj+ jyj):jx� yj � (1
4
+
1

4
):jx� yj

� 1

2
:jx� yj = �:jx� yj (� =

1

2
):

Hence T is a contraction with 0 � � < 1.
(ii) Clearly, T has a unique �xed point x0 = 0: �
Example (2) Let X = (0; 14 ], an incomplete metric space, and T : (0;

1
4 ] ! [0; 14 ]

such that

T (x) = x2, x 2 (0; 1
4
].

Then: (i) T is a contraction;

(ii) T has no �xed point.

Solution. (i) For x; y 2 (0; 14 ],

d(Tx; Ty) = jTx� Tyj =
��x2 � y2�� = jx+ yj :jx� yj

� (jxj+ jyj):jx� yj � (1
4
+
1

4
):jx� yj

� 1

2
:jx� yj = �:jx� yj (� =

1

2
):

Hence T is a contraction with � = 1
2 , 0 � � < 1.

(ii) Clearly, T has no �xed in X = (0; 14 ]. �
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Example (3) Let X = [0; 1], a complete metric space, and T : [0; 1] ! [0; 1] such

that

T (x) = x2, x 2 [0; 1].

Then: (i) T is K-Lipshitz, not a contraction or nonexpansive;

(ii) T has two �xed points (not a unique one).

Solution. (i) For any x; y 2 [0; 1],

d(Tx; Ty) = jTx� Tyj =
��x2 � y2�� = jx+ yj :jx� yj

� (jxj+ jyj):jx� yj � (1 + 1):jx� yj

� 2:jx� yj.

Therefore, T is K-Lipshitz (with K = 2), but not a contraction or nonexpansive.

(ii) Clearly, T has two �xed points x0 = 0 and y0 = 1. �
Example (4) Let X = R, a complete metric space, and T : R! R such that

T (x) = x+ 1, x 2 R.

Then: (i) T is non-expansive (or 1-Lipshitz), not a contraction;

(ii) T has no �xed points.

Solution. (i) For any x; y 2 R,

d(Tx; Ty) = jTx� Tyj = jx+ 1� y � 1j = jx� yj.

Therefore, T is non-expansive (or 1-Lipshitz), but not a contraction.

(ii) Clearly, T has no �xed points. �
Remark. It seems intuitively clear that any continuous function mapping the unit

interval into itself will have a �xed point, but the Banach Theorem applies only to

functions f that satisfy
���f 0(x)��� � � for some � < 1. An elementary example of this

is the function f(x) = 1� x, which has an obvious �xed point at x = 1=2, but whose
derivative satis�es

���f 0(x)��� = 1 everywhere, therefore
d(f(x); f(x0)) = d(x; x0);

so f is not a contraction and the Banach Fixed point Theorem does not apply to f .

The �xed point theorem due to Brouwer (Section 2.2) covers this case as well as a great

many others that the Banach Theorem fails to cover because the relevant functions

are not contractions.

De�nition: Let K � (X; d). A mapping T : K ! K is said to be a Banach
operator if there exists a constant � such that 0 � � < 1 and for each x 2 K

d(T 2x; Tx) � �d(Tx; x): (BO)
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Every contraction mapping is a Banach operator, but not conversely. A Banach oper-

ator need not be continuous, nor need its �xed points be unique.

Theorem 2.1.2. [Sub77, KhKh95] Let C be a closed subset of a metric space

(X; d), and let T : C ! C be a continuous Banach operator. Then T has a �xed point

in C each of the following cases:

(a) (X; d) is complete.

(b) T (C) is compact.

Proof. (Outline) These are similar to that of the Banach Contraction Principle,
with slight modi�cation, as follows.

(a) (X; d) is complete. Take any x 2 C and consider fTn(x)g1n=0. Then, using
(BO), for any integer k � 1;

d(T k(x); T k+1(x)) � �d(T k�1(x); T k(x))

� :::::::::

� �kd(x; T (x)).

Now, if m < n,

d(Tm(x); Tn(x)) � d(Tm(x); Tm+1(x)) + d(Tm+1(x); Tm+2(x))

+::::::::+ d(Tn�1(x); Tn(x))

� �m

1� �d(x; T (x)):

Since 0 � � < 1; lim
m!1

�m = 0: Hence fTn(x)g is Cauchy in T (C). Since C is closed

in X and X is complete, C is also complete and so

lim
n!1

Tn(x) = x0 (say) exists and x0 2 T (C) � C = C (since C is closed).

Now, since T is assumed to be continuous,

T (x0) = T ( lim
n!1

Tn(x)) = lim
n!1

Tn+1(x) = lim
n!1

Tn(x) = x0:

Thus x0 is a �xed point of T in C.

(b) Suppose T (C) is compact. Take any x 2 C and consider fTn(x)g1n=0. As in
the above proof, if m < n,

d(Tm(x); Tn(x)) � �m

1� �d(x; T (x)):

Since 0 � � < 1; lim
m!1

�m = 0: Hence fTn(x)g is Cauchy in T (C). Since closure T (C)
is compact in the metric space, it is complete and so

lim
n!1

Tn(x) = x0 (say) exists and x0 2 T (C) � C = C (since C is closed).
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Then, by continuity of T ,

T (x0) = T ( lim
n!1

Tn(x)) = lim
n!1

Tn+1(x) = lim
n!1

Tn(x) = x0:

Thus x0 is a �xed point of T in C. �
Next we consider more general notions of the contractive mappings and Caristi

mappings and present famous �xed point theorems of Edelstein (1962) and Caristi

(1976).

Recall that: a mapping T : (X; d)! (X; d) is called contractive if

d(Tx; Ty) < d(x; y) for all x; y 2 X:

Theorem 2.1.3. (Edelstein, 1962) Let (X; d) be a compact metric space and

T : X ! X is a contractive mapping. Then T has a unique �xed point in X.

Proof. De�ne ' : X ! R+ by

'(x) = d(x; Tx), x 2 X:

Then ' is continuous (as d; T are continuous). [In fact, if xn ! x; Then

lim
n!1

'(xn) = lim
n!1

d(xn; Txn) = d(x; Tx) = '(x):]

Since X is compact, ' attains its in�mum on X at some point x0 (say). i.e.

'(x0) = inf
x2X

'(x).

We show that T (x0) = x0: Suppose T (x0) 6= x0: Then

'(T (x0)) = d(T (x0); T
2(x0)) < d(x0; T (x0)) = '(x0),

so

'(T (x0)) < '(x0) = inf
x2X

'(x):

This is a contradiction (since T (x0) 2 X): Hence T (x0) = x0: To show the uniqueness
of x0, suppose 9 a y0 2 X such that T (y0) = y0: Then

d(x0; y0) = d(Tx0; T y0)

< d(x0; y0) (since T is contractive),

a contradiction. So x0 = y0: �
De�nition: Let (X; d) be a metric space. A map T : X ! X is called a Caristi

map (or Caristi-Ekeland map) if 9 a lower semi continuous (l.s.c.) ' : X ! R+

such that

d(x; Tx) � '(x)� '(Tx) 8x 2 X:
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Lemma 2.1.4. Any contraction map T : (X; d)! (X; d) is a Caristi map.

Proof. Since T is a contraction map, 9 an � 2 [0; 1) such that

d(Tx; Ty) � �d(x; y)8x; y 2 X:

De�ne ' : X ! R+ by '(x) = 1
1��d(x; Tx); x 2 X: Then ' is l.c.s. We need to show

that d(x; Tx) � '(x)� '(Tx) 8 x 2 X: First

'(Tx) =
1

1� �d(x; T
2x) � 1

1� �:�:d(x; Tx)

= �:
1

1� �d(x; Tx) = �:'(x):

Thus ��:'(x) � �'(Tx):Now, using (1),

d(x; Tx) = (1� �)'(x) = '(x)� �:'(x) � '(x)� '(Tx). �

Theorem 2.1.5. (Caristi, 1976) Let (X; d) be a complete metric space and T :
X ! X is a Caristi map. Then T has a �xed point in X.

Proof. (I) Since T is a Caristi map, 9 a l.s.c. ' : X ! R+ such that

d(x; Tx) � '(x)� '(Tx)8x 2 X: (1)

De�ne a partial order � on X by:

x � y () d(x; y) � '(x)� '(y):

By de�nition of �, putting y = Tx then

x � Tx() d(x; Tx) � '(x)� '(Tx); which is true by (1):

Thus, x � Tx: Next in steps (II)-(III) using Zorn�s lemma we show that 9 an x0 2 X
such that Tx0 = x0:

(II) Let M be a maximal totally ordered subset of X. Take any totally ordered

subset fx� : � 2 Ig of M . Then we need to show that fx�g�2I is a Cauchy net in X.
First note that f'(x�) : � 2 Ig is a decreasing net in R+: Indeed

� � � () x� � x�
() 0 � d(x�; x�) � '(x�)� '(x�)

() '(x�) � '(x�)

() '(x�) � '(x�):

Thus

r = inf
�2I
f'(x�)g exists in R+;
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i.e. given " > 0;9 an �0 2 I such that

r � '(x�) < r + " 8� � �0:

Hence, if � > � � �0;

d(x�; x�) � '(x�)� '(x�) � '(x�)� r < (r + ")� r = ":

Then fx�g�2I is Cauchy in X:
(III) Since X is complete, x� ! x0 (say) in X. Since ' : X ! R+ is l.s.c.

'(x0) � lim inf
�
'(x�) = r: (2)

Now if � > � (or � < � or x� < x�);

d(x�; x�) � '(x�)� '(x�):

Taking lim
�
inf and using (2),

d(x�; x0) � '(x�)� r � '(x�)� '(x0):

Thus

x� � x0 (by de�nition of partial order � ). (3)

Since M is maximal and fx�g�2I � M; so x� ! x0 2 M: Since d(x; Tx) � '(x) �
'(Tx) 8 x 2 X: Then

x � Tx 8x 2 X =) x0 � Tx0: (4)

By (3) & (4), x� � x0 � Tx0. But x0 is an upper bound of fx�g�2I , we have
Tx0 � x0. HenceTx0 = x0, so x0 is a �xed point of T . �

Next, we de�ne some classes of mappings related to non-expansive mappings:

De�nition: Let (X; d) is a metric space and K � X. Then a mapping T : K �!
K is called:

(i) nonexpansive if

d(T (x); T (y)) � d(x; y) holds for all x; y 2 K.

(ii) asymptotically nonexpansive (Goebel-Kirk [GK72]) if, for each pair x; y 2
K :

d(Tn(x); Tn(y)) � knd(x; y),

where (kn)n2N is a sequence of real such that lim
n!1

kn = 1.

(iii) quasi-nonexpansive (Dotson [Do72]) if Fix(T ) is non-empty and

d(T (x); p) � d(x; p) for all x 2 K, p 2 Fix(T ).
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Note. T is nonexpansive with Fix(T ) 6= ? ) T is quasi-nonexpansive:

d(T (x); p) � d(T (x); T (p)) � d(x; p) for all x 2 K, p 2 Fix(T ).

Properties of Fix(T)
Lemma 2.1.6. Let K � (X; d) and T : K ! K is either (i) nonexpansive map,

or (ii) quasi-non-expansive map. Then Fix(T ) is closed.

Proof. If Fix(T ) is empty or a �nite set, it is clearly closed. Suppose Fix(T )
is an in�nite set. To prove that Fix(T ) is closed, it su¢ ces to show that Fix(T ) �
Fix(T ):Let x 2 Fix(T ); then there is a sequence fxng � Fix(T ) such that xn ! x:

(i) Suppose T is nonexpansive. Then T is continuous, and so

T (x) = T ( lim
n!1

xn) = lim
n!1

T (xn) (by continuity of T )

= lim
n!1

xn (since fxng � Fix(T ))

= x:

So x 2 Fix(T ). Hence Fix(T ) � Fix(T ) i.e., Fix(T ) is closed.
(ii) Suppose T is quasi-nonexpansive. Since xn ! x, for each " > 0, there is N 2 N

such that d(x; xN ) < "
2 . Since T is quasi-nonexpansive and xN 2 Fix(T ),

d(x; T (x)) � d(x; xN ) + d(T (x); xN )

� d(x; xN ) + d(x; xN )

� 2d(x; xN ) < 2
"

2
= ":

Since " is arbitrary, we must have d(x; T (x)) = 0; i.e., x 2 Fix(T ): Therefore, Fix(T )
is closed. �

Recall that: A normed space (X; k:k) is called strictly convex if, for any x; y 2 X
with kxk = 1, kyk = 1;

kx+ yk = 2) x = y:

Theorem 2.1.7. ([GK90], p. 34) Let K be a convex closed subset of a strictly

convex Banach space (X; jj:jj) and T : K �! K nonexpansive. Then the set Fix(T )

is a closed and convex.

Proof. As proved above, if K � (X; d), any metric space, and T : K �! K is

nonexpansive or quasi-nonexpansive, then Fix(T ) is closed.

To prove that Fix(T ) is a convex set, choose any two points x 6= y 2 Fix(T ) and
t 2 (0; 1), and let

z = (1� t)x+ ty:
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Since T (x) = x; T (y) = y and T is nonexpansive,

jjx� T (z)jj+ jjT (z)� yjj = jjT (x)� T (z)jj+ jjT (z)� T (y)jj

� jjz � xjj+ jjz � yjj

= jjx� tx+ ty � xjj+ jjx� tx+ ty � yjj

= t:jjx� yjj+ (1� t):jjx� yjj

= jjx� yjj

� jjx� T (z)jj+ jjT (z)� yjj;

hence

jjx� T (z)jj+ jjT (z)� yjj = jjx� yjj;

jjx� zjj+ jjz � yjj = jjx� yjj

:It follows that x; T (z); y are colinear, while

jjx� zjj = jjx� T (z)jj and jjy � zjj = jjy � T (z)jj:

Since X is strictly convex, it follows that T (z) = z. Hence z = (1� t)x+ ty 2 Fix(T ),
and so Fix(T ) is convex. �

Note. The above result is also true for broader classes of mappings: quasi-

nonexpansive and asymptotically nonexpansive mappings.

The following theorem is a famous result in Fixed Point Theory obtained indepen-

dently by Kirk, Gohde and Browder in 1965.

Theorem 2.1.8. Let K be a closed bounded convex subset of a uniformly convex

Banach space X. Then every nonexpansive mapping T : K �! K has at least one

�xed point.

In fact, Kirk [Kir65] proved a slightly more general result than the above. This

requires the terminology of "normal structure".

De�nition: (Brodskii-Milman [BM48]) (i) ([GK90], p. 38-39; [KK01], p. 200)
A convex set K in a Banach space X is said to have normal structure if for each
bounded, closed and convex subset H � K for which �(H) = supfd(x; y) : x; y 2
Hg > 0 (e.g. H contains more than one point), there is some point x0 2 H such that

supfd(x0; x) : x 2 Hg < �(H):

Such a point x0 2 H is called a nondiametrical point of H.
(ii) ([KK01], p. 200) A convex set K in a Banach space X is said to have uniform

normal structure if there exists a constant c < 1 such that, for each bounded, closed
and convex subset H � K for which �(H) > 0, there is some point x0 2 H such that

supfd(x0; x) : x 2 Hg < c:�(H):
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Theorem 2.1.9. ([KK01], p. 202-204) (a) Every compact subset K of a Banach

space X has normal structure. In particular, every �nite dimensional Banach space

has normal structure.

(b) Every uniformly convex Banach space X has uniform normal structure.

(c) If a Banach space space X has uniform normal structure, then it is re�exive.

Recall that a subset K of a normed space X is compact (resp. weakly compact)
if every sequence in K has a norm convergent (resp. weakly convergent) subsequence

with limit in K.

Theorem 2.1.10. ([GK90], p. 40; [KK01], p. 203) Let K be weakly compact

convex subset of a Banach space X, and suppose K has normal structure. Then every

nonexpansive mapping T : K �! K has at least one �xed point.

2.2 Brouwer and Tychono¤-Schauder�s Fixed Point The-
orems for Continuous Mappings

In this section we take up famous �xed point theorems of Brouwer (1910), Schauder

(1930), Tychono¤-Schauder (1935), Markov-Kakutani (1941) and Tarski (1955).

Theorem 2.2.1. (Brouwer, 1910) Let K be a nonempty, bounded closed (equiv-

alently, compact) convex subset of Rn. Every continuous function T : K ! K has a

�xed point.

Remark. The Brouwer Theorem requires only that f be continuous, not that it

be a contraction, so there are lots of situations in which the Brouwer Theorem applies

but the Banach Theorem doesn�t. In particular. Brouwer�s Theorem con�rms our

intuition that any continuous function mapping [0; 1] into itself has a �xed point, not

just the functions that satisfy
���f 0(x)��� � � for some � < 1:But conversely, the Banach

Theorem doesn�t require compactness or convexity, in fact, it doesn�t require that the

domain of f be a subset of a vector space, as this version of Brouwer�s Theorem does.

So there are also lots of situations where Banach�s Theorem applies and Brouwer�s

doesn�t.

There are several proofs of Brouwer�s Theorem in literature, all of them require

some highly specialized mathematical ideas.

Remark. ([KK01], p. 179) Brouwer�s Theorem cannot be extended to an in�nite

dimensional Banach space.

Example. ([KK01], p. 179) Let X = c0 with the norm (i.e. `1-norm since

c0 � c � `1)

jjxjj = supfjx1j; jx2j; jx3j; :::), x = fxng 2 c0::
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and B = B[0; 1]] the closed unit ball in X. De�ne T : B ! B by

T (x) = (1� jx1j; x1; x2; :::), x = fxng 2 B:

Then

jjT (x)� T (y)jj = jj(1� jx1j � 1 + jy1j; x1 � y1; x2 � y2; :::)jj

= supfj jx1j � jy1j j; jx1 � y1j; jx2 � y2j; ::::g

= supfjx1 � y1j; jx2 � y2j; ::::g, since j jx1j � jy1j j � jx1 � y1j

= jjx� yjj;

so T is nonexpansive, hence continuous on B. However,

T (x) = x) (1� jx1j; x1; x2; :::) = (x1; x2; :::)

) (1� jx1j � x1; x1 � x2; x2 � x3; :::) = (0; 0; :::)

) 1� jx1j � x1 = 0; x1 � x2 = 0; x2 � x3 = 0; :::

) 1� jx1j � x1 = 0; x1 = x2 = x3 = x4 = ::::.

Hence

fxng = fx1; x2; x3; ::::g = fx1; x1; x1; ::::g ! fx1g (clearly);

but fxng ! 0 (as fxng 2 c0), and so x1 = 0. Therefore

1� jx1j � x1 = 0) 1 = 0;

a contradiction. Hence T has no �xed point in B. �
Next is a generalization of Brouwer�s Theorem to normed vector spaces (which

need not be �nite-dimensional, as Brouwer�s Theorem requires).

Theorem 2.2.2. (Schauder) ([KK01], p. 179) Let K be a nonempty, compact,

convex subset of a normed vector space X. Then every continuous function T : K ! K

has a �xed point.

This theorem would apply, for example, to any compact convex subset of the

normed space C [0; 1] with the max norm.

Theorem 2.2.3. (Schauder-Tychono¤, 1935) Let K be a nonempty, compact,

convex subset of a locally convex space X. Then every continuous function T : K ! K

has a �xed point.

Theorem 2.2.4 (Markov-Kakutani, 1941) Let K be a nonempty, compact, convex

subset of a TVS X. Then every continuous linear map T : K ! K has a �xed point.

More generally, if F is a commuting family of continuous linear maps from K ! K,

then F has a common �xed point in K.
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The proofs of above results some deep results such as KKM Theorem and Ky Fan

Theorem. However, if T is assumed to be nonexpansive, then a simple proof of the

following theorem is given by Dotson and Mann (American Math. Monthly (1977)).

Theorem 2.2.5. [DM77] Let C be a compact convex subset of a normed space X

and T : C ! C a nonexpansive mapping. Then T has a �xed point in C.

Proof. Step (I) For any �xed p 2 C and any �xed positive integer n, de�ne a

function Gn : C ! C by

Gn(x) =
1

n+ 1
:p+

n

n+ 1
:Tx for all x 2 C:

Observe that Gn(C) � C (since Gn(x) is a convex combination of p; Tx 2 C and C

is convex) Next observe, for any x; y 2 C,

kGn(x)�Gn(y)k =
kp+ nTx� p� nTyk

n+ 1
=

n

n+ 1
kT (x)� T (y)k

� n

n+ 1
kx� yk = kn: kx� yk , (T is nonexpansive)

where kn = n
n+1 , 0 < kn < 1. So each Gn is a contraction on the complete metric

space C. Hence, by the Banach Contraction Principle, each Gn has a unique �xed

point xn (say) in C.

Step (II) Now fxng � C, a compact metric space, and so fxng has a convergent
subsequence, also denoted by fxng such that xn ! x0 (say) in C (since C is also

closed). Now, for each n,

xn = Gn(xn) =
1

n+ 1
:p+

n

n+ 1
:Txn;

hence, by continuity of T ,

x0 = lim
n!1

xn = lim
n!1

1

n+ 1
:p+ lim

n!1
n

n+ 1
: lim
n!1

T (xn)

= lim
n!1

1

n+ 1
:p+ lim

n!1
n

n+ 1
: lim
n!1

T ( lim
n!1

xn)

= o:p+ 1:T (x0) = T (x0)

Thus x0 is a �xed point of T . �
Tarski Fixed Point Theorem
De�nition: A non-empty set X with a relation � is said to be a partially or-

dered set whenever the following conditions are satis�ed.
(i) x � x for every x 2 X,
(ii) x � y and y � x implies that x = y, and
(iii) x � y and y � z implies that x � z.
If, in addition, for any two elements x; y 2 X either x � y or y � x,then X is

called a totally ordered set.
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De�nition: Let A be a subset of an partially ordered set X.
(i) x 2 X is called an upper bound of A if y � x for every y 2 A.
(ii) z 2 X is called a lower bound of A if y � z for all y 2 A.
De�nition: An partially ordered set (X;�) is called a lattice if any two elements

x; y 2 X have a least upper bound denoted by x _ y = sup(x; y) and a greatest lower
bound denoted by x ^ y = inf(x; y).

De�nition: A partially ordered set (X;�) is a complete lattice if every S � X
has a least upper bound and greatest lower bound in X.

Note. (1) A complete lattice is automatically a lattice.
(2) A complete lattice must be bounded, since one can always take S = X.

(3) A complete lattice need not be complete in the metric space sense even when

X is a metric space.

(4) If X is complete lattice, then for any a; b 2 X, a � b., the interval [a; b] = fx 2
X : a � x � bg is a complete lattice.

Example 1. The set X = [0; 12)[f1g is a complete lattice, In particular, the least
upper bound of S = [0; 12) is 1 2 X (because the only upper bound of S is 1). But X

is not complete in the metric space sense.

Given a partially ordered set X, an interval in X is a set of the form [a; b] = fx 2
X : a � x � bg, where a; b 2 X, a � b.

Example 2. Suppose that X = [0; 12) [ (
3
4 ; 1]. Then I = X is an interval in X

that is not a complete lattice, since S = [0; 12) has no least upper bound in I.

De�nition: A mapping T : X ! X is called order preserving (or weakly
increasing) if x � y implies T (x) � T (y):

Again, since X is only partially ordered, there may be many pairs of x and y for

which this property need not hold.

Theorem 2.2.6.(Tarski [Tar55]). Let X be a non-empty complete lattice. If T :

X ! X is order preserving, then the set Fix(T ) is a non-empty complete lattice.

Remarks. (1) A kind of converse of this theorem was proved by Anne C. Davis:

If every order preserving function T : X ! X on a lattice T has a �xed point, then T

is a complete lattice.

(2) Since complete lattices cannot be empty, the theorem in particular guarantees

the existence of at least one �xed point of T , and even the existence of a least (or

greatest) �xed point. In many practical cases, this is the most important implication

of the theorem.

(3) The least �xed point of T is the least element x such that T (x) = x, or,

equivalently, such that T (x) � x; the dual holds for the greatest �xed point, the

greatest element x such that T (x) = x.
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2.3 Fixed Point Theorems for Kannan type Mappings

The classical Banach�s contraction principle (1922) is no doubt one of the most useful

results in �xed point theory. This theorem has many applications, but su¤ers from one

drawback - the de�nition requires that the map T : X ! X be continuous throughout

the metric space (X; d). In 1968 Kannan [Kan68] gave an example of a contractive

de�nition that does not require the continuity of T . There then followed a �ood of

papers involving contractive conditions , many of them do not require the continuity

of T (see, for example, Chatterjea (1972), Zam�rescu (1972), Ciric (1974)). They

obtained �xed point theorems using convergence for Picard iterates to �xed Points.

Also Rhoades (1974, 1976) and Berinde (2005, 2007) obtained convergence for Mann

iterates of certain mappings to �xed Points in Banach spaces.

First we present a useful result of Rhoades [Rh88]. This demonstrates that many

contractive de�nitions require T be continuous at a �xed point. For this, it will be

su¢ cient to show that such is the case for the most general de�nitions.

Theorem 2.3.1. ([Rh88], p. 233-234) Let (X; d) be a complete metric space,

0 � k < 1: Suppose that for each x; y 2 X;

d(Tx; Ty) � k:maxfd(x; y); d(x; Tx); d(y; Ty); d(x; Ty); d(y; Tx)g: (1)

Then T is continuous at the �xed point x0:

Proof. By a result of Rhoades ([Rh77], Theorem 11) the sequence

fxng1n=0 = fTn(x0)g1n=0 = fx0; T (x0); T 2(x0); T
3(x0); ::::g:

of Picard iteration converges to the unique �xed point x0: Then

lim
n!1

Txn = lim
n!1

T (Tn(x0)) = lim
n!1

Tn+1(x0) = lim
n!1

xn+1 = x0,

and so Txn ! x0.

To show that T is continuous at x0, let fyng be any sequence in X converging to

x0:Using (1),

d(Tyn; Txn) � k:maxfd(xn; yn); d(yn; T yn); d(xn; Txn); d(yn; Txn); d(xn; T yn)g

� k:maxfd(xn; yn); d(yn; Txn) + d(Txn; T yn);

d(xn; Txn); d(yn; Txn); d(xn; Txn) + d(Txn; T yn)g

� k:maxfd(xn; yn); d(yn; Txn) + d(Txn; T yn); d(xn; Txn) + d(Txn; T yn)g;

or,

(1� k)d(Tyn; Txn) � k:maxfd(xn; yn); d(yn; Txn); d(xn; Txn)g.
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So

d(Tyn; Txn) �
k

1� k maxfd(xn; yn); d(xn; Txn); d(yn; Txn)g:

Therefore, since xn ! x0, Txn ! x0 and yn ! x0,

lim
n!1

d(Tyn; Txn) � k

1� k maxfd(x0; x0); d(x0; x0); d(x0; x0)g = 0;

and so d(Tyn; Tx0) � d(Tyn; Txn) + d(Txn; x0)! 0:

Hence Tyn ! Tx0 and so T is continuous at x0:�
We next present a famous result of Kannan [Kan68].

De�nition: [Kan68] Let (X; d) be a metric space. A mapping T : X ! X is

called a Kannan mapping if 9 an � 2 (0; 12) such that

d(Tx; Ty) � �[d(x; Tx) + d(y; Ty)] for all x; y 2 X:

Remark. (1) Contraction < Kannan mapping; (2) Continuity < Kannan map-

ping.
Example (1) Let X = [0; 1] and T : X ! X such that

Tx =

(
x
4 if 0 � x <

1
2

x
5 if

1
2 � x � 1

Then (i) T is not continuous (discontinuous at x = 1
2) and consequently T is not

contraction.

(ii) T is a Kannan mapping with � = 4
9 <

1
2 :

Note that T has a �xed point x0 = 0:

Example (2) Let X = [0; 1] and T : X ! X such that Tx = x
3 : Then

(i) T is a contraction with � = 1
3 < 1:

(ii) T is not a Kannan mapping.

Solution. (i) For any x; y 2 [0; 1],

d(Tx; Ty) = jTx� Tyj =
����x3 � y3 j = 1

3
jx� yj

���� = 1

3
:d(x; y):

(ii) Take x = 1
3 ; y = 0: Then

d(Tx; Ty) = jTx� Tyj =
����T (13)� T (0)

���� = ����19 � 0
���� = 1

9
;

d(x; Tx) + d(y; Ty) = jx� Txj+ jy � Tyj =
����13 � 19

����+ j0� 0j = 2

9
;

so d(Tx; Ty) =
1

9
=
1

2
:
2

9
=
1

2
[d(x; Tx) + d(y; Ty)]

�
1

2
[d(x; Tx) + d(y; Ty)]:
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Hence T is not a Kannan mapping.

Theorem 2.3.2. [Kan68] Let (X; d) be a complete metric space and T : X ! X

a kannan mapping. Then T has a unique �xed point.

Proof. (I) Suppose 9 an � 2 (0; 12) such that

d(Tx; Ty) � �[d(x; Tx) + d(y; Ty)] for all x; y 2 X: (1)

Let x2 X: We want to show that fTnxg is a Cauchy sequence in X. Then for any
k � 1;

d(T kx; T k+1x) = d(T (T k�1x); T (T kx))

� �[d(T k�1x; T kx) + d(T kx; T k+1x)];

or, d(T kx; T k+1x)[1� �] � �d(T k�1x; T kx);

or, d(T kx; T k+1x) � �

1� �d(T
k�1x; T kx): (2)

Using (2) repeatedly, we obtain

d(T kx; T k+1x) �
�

�

1� �

�k
d(x; Tx): (3)

Now, if m < n, using (3)

d(Tmx; Tnx) � d(Tmx; Tm+1x) + d(Tm+1x; Tm+2x) + ::::::::+ d(Tn�1x; Tnx)

�
�

�

1� �

�m
d(x; Tx) +

�
�

1� �

�m+1
d(x; Tx) + ::::::::+

�
�

1� �

�n�1
d(x; Tx)

=

"�
�

1� �

�m
+

�
�

1� �

�m+1
+ :::::::+

�
�

1� �

�n�1#
d(x; Tx)

�
"�

�

1� �

�m
+

�
�

1� �

�m+1
+ :::::::+

�
�

1� �

�n�1
+ :::::::

#
d(x; Tx)

=

24
�

�
1��

�m
1� �

1��

35 d(x; Tx)
=

�
�

1� �

�m� 1� �
1� 2�

�
d(x; Tx):

Since 0 < � < 1
2 ; we have

�
1�� < 1 (since 2� < 1) and lim

m!1

�
�
1��

�m
= 0: Then also

lim
m!1

�
�

1� �

�m� 1� �
1� 2�

�
d(x; Tx) = 0:

So given " > 0; 9 an N � 1 such that�
�

1� �

�m� 1� �
1� 2�

�
d(x; Tx) < " for all m � N:
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Thus

d(Tmx; Tnx) �
�

�

1� �

�m� 1� �
1� 2�

�
d(x; Tx) < " for all n > m � N:

Hence fTnxg is a Cauchy sequence in X.
(II) Since X is compelet, Tnx! x0 (say) in X. We want to show that Tx0 = x0:

Now

d(x0; Tx0) � d(x0; T
nx) + d(Tnx; x0)

� d(x0; T
nx) + �[d(Tn�1x; Tnx) + d(x0; Tx0)];

or

d(x0; Tx0) � 1

1� �d(x0; T
nx) +

�

1� �d(T
n�1x; Tnx)

� 1

1� �d(x0; T
nx) +

�

1� �

�
�

1� �

�n�1� 1� �
1� 2�

�
d(x; Tx)

=
1

1� �d(x0; T
nx) +

�
�

1� �

�n� 1� �
1� 2�

�
d(x; Tx):

Since d(x0; Tnx)! 0 and
�

�
1��

�n
! 0; we have

d(x0; Tx0) = 0 or Tx0 = x0:

(III) Uniqueness of x0: Suppose also that Ty0 = y0 for some y0 2 X: Then

d(x0; y0) = d(Tx0; T y0) � �[d(x0; Tx0) + d(y0; T y0)] = �[0 + 0] = 0;

hence x0 = y0: �
Next we present a more general result, due to Zam�rescu [Zam72], which includes

Theorem 2.3.2 as a particular case.

De�nition: [Zam72] Let (X; d) be a complete metric space. A mapping T :

X ! X is called a Zam�rescu operator if there exist the real numbers �; � and 

satisfying 0 < � < 1, 0 < �; 
 < 1=2 such that for each pair x; y 2 X, at least one of
the following holds:

(z1) (Banach) d(T (x); T (y)) � �d(x; y);
(z2) (Kannan) d(T (x); T (y)) � �[d(x; T (x)) + d(y; T (y))];
(z3) (Chatterjea) d(T (x); T (y)) � 
[d(x; T (y)) + d(y; T (x))].
Theorem 2.3.3. [Zam72] Let (X; d) be a complete metric space and T : X ! X

a Zam�rescu operator. Then T has a unique �xed point.

Proof. For any �xed x0 2 X, consider the Picard iteration fTn(x0)g1n=0. We �rst
show that fTn(x0)g1n=0 is a Cauchy sequence in X. Denoting

� = maxf�; �

1� � ;



1� 
 g;
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we have 0 < � < 1.

If (z1) holds, then

d(Tn+1(x0); T
n+2(x0)) � �d(Tn(x0); T

n+1(x0))

� �d(Tn(x0); T
n+1(x0)):

If (z2) holds, then

d(Tn+1(x0); T
n+2(x0)) � �[d(Tn(x0); Tn+1(x0)) + d(Tn+1(x0); Tn+2(x0))]:

or

d(Tn+1(x0); T
n+2(x0)) � �

1� �d(T
n((x0)); T

n+1(x0))

� �d(Tn(x0); T
n+1(x0)):

If (z3) holds, then

d(Tn+1(x0); T
n+2(x0)) � 
[d(Tn(x0); Tn+1(x0)) + d(Tn+1(x0); Tn+2(x0))]:

or

d(Tn+1(x0); T
n+2(x0)) � 


1� 
 d(T
n(x0); T

n+1(x0))

� �d(Tn(x0); T
n+1(x0)):

Thus in each case,

d(Tn+1(x0); T
n+2(x0)) � �d(Tn(x0); T

n+1(x0))

� �2d(Tn�1(x0); T
n(x0))

� :::::::

� �nd((x0); T ((x0)))

Since �n ! 0, it follows that fTn(x0)g is a Cauchy sequence and therefore Tn(x0)!
z 2 X.

We now prove that z is a �xed point of T . Suppose T (z) 6= z and consider the ball

B = fx 2M : d(x; z) � 1

4
d(z; T (z))g:

Observe that, for any x 2 B,

d(z; T (z) � d(z; x) + d(x; T (z) � 1

4
d(z; T (z) + d(x; T (z);

so d(x; T (z)) >
3

4
d(z; T (z)):
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There exists a number N such that Tn(x0) 2 B for each n � N . Taking now x =

TN (x0) and y = z, we must have again one of the next three situations:

(1)

d(TN+1(x0); T (z)) � �d(TN (x0); z);

which, however, contradicts

�d(TN (x0); z) � d(TN (x0); z) �
1

4
d(z; T (z)) < d(TN+1(x0); T (z));

(2)

d(TN+1(x0); T (z)) � �[d(TN (x0); TN+1(x0)) + d(z; T (z))]

contradicting

�[d(TN (x0); T
N+1(x0)) + d(z; T (z))]

<
1

2
[d(TN (x0); z) + d(z; T

N+1(x0)) + d(z; T (z))]

� 3

4
d(z; T (z)) � d(TN+1(x0)); T (z));

(3)

d(TN+1(x0)); T (z)) � 
[d(TN (x0); T (z)) + d(TN+1(x0); z)]

respectively contradicting


[d(TN (x0); T (z)) + d(T
N+1(x0); z)]

<
1

2
[d(TN (x0); z) + d(z; T (z)) + d(z; T

N+1(x0))]

� 3

4
d(z; T (z)) � d(TN+1(x0); T (z)):

Thus, T (z) = z:

Now we show that this �xed point z is unique. Suppose this is not true: T (z�) = z�

for some point z� 2M di¤erent from z. Then

d(T (z); T (z�)) = d(z; z�);

d(T (z); T (z�)) > d(z; T (z)) + d(z�; T (z�));

td(T (z); T (z)) =
1

2
[d(z; T (z�)) + d(z�; T (z))];

so that none of the three conditions of the theorem is satis�ed at the points z and

z�.

Corollary 2.3.4 (Banach). Let X be a complete metric space, � < 1, and T :

X ! X a function such that for each pair of di¤erent points in X condition (z 1) is

veri�ed. Then T has a unique �xed point.
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Corollary 2.3.5 (Kannan). Let X be a complete metric space, � < 1
2 , and

T : X ! X a function such that for each pair of di¤erent points in M condition (z 2)

is veri�ed. Then T has a unique �xed point.

Motivated by the Zam�rescu�s results ([Zam72], Theorem 1), we consider the fol-

lowing.

De�nition: [Os95, Be04] Let (X; d) be a complete metric space. A mapping

T : X ! X is called a (��L)-quasi-contractive mapping with 0 � � < 1, L > 0 if
it satis�es

d(T (x); T (y)) � �:d(x; y) + L:d(x; T (x)) for all x; y 2 X; (DL)

or equivalently d(T (x); T (y)) � �:d(x; y) + L:d(y; T (y)) for all x; y 2 X.
Recall that a mapping T : X ! X is called a quasi-contractive if it satis�es

d(T (x); u) < d(x; u) for all x 2 X and u 2 Fix(T ): (Q)

Lemma 2.3.6 (a) Every Zam�rescu operator T on X is ( ��L)-quasi-contractive
for some 0 � � < 1 and L = 2�.

(b) Every ( � � L)-quasi-contractive mapping T on X is quasi-contractive.

(c) Every ( � � L)-quasi-contractive mapping T on X has at most one �xed point.

Proof. (a) This follows essentially from the proof of Theorem 1 of ([Zam72],

theorem 1). In fact, let �; � and 
 be the numbers with 0 < � < 1, 0 < �; 
 < 1=2

satisfying (z1), (z2) and (z3). If (z2) holds, then

d(Tx; Ty) � �[d(x; Tx) + d(y; Ty)]

� �[d(x; Tx) + d(y; x) + d(x; Tx) + d(Tx; Ty)]

� 2�d(x; Tx) + �d(y; x) + �d(Tx; Ty);

and so

d(Tx; Ty) � �

1� �d(x; y) +
2�

1� �d(x; Tx): (1)

Similarly, if (z3) holds, then

d(Tx; Ty) � 


1� 
 d(x; y) +
2


1� 
 d(x; Tx): (2)

Denoting

� = maxf�; �

1� � ;



1� 
 g;

we have 0 < � < 1 and by (z1), (1) and (2),

d(Tx; Ty) � �d(x; y) + 2�d(x; Tx) for all x; y 2 K:

Thus T is a (��L)-quasi-contractive mapping with L = 2�.
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(b) Suppose T is (��L)-quasi-contractive. For x 2 X and u 2 Fix(T ), by (DL),
we obtain

d(Tx; u) = d(Tx; Tu) � �:d(x; u) + L:d(u; Tu) = �:d(x; u) + L:0 < d(x; u):

Hence T is quasi-contractive.

(c) Let u;w 2 Fix(T ) with u 6= w. Then, by (DL),

d(u;w) = d(Tu; Tw) � �d(u;w) + 2�d(u; Tu)

= �d(u;w) + 2�:0 = �d(u;w) < d(u;w),

a contradiction. Hence u = w. �
We next consider convergence of Mann Iterates to �xed points in Banach spaces

De�nition: Let E be a Banach space, K a convex subset of E and T : K ! K a

given mapping. For any x0 2 K and f�ng � [0; 1], the sequence fxng � K de�ned by

xn+1 = (1� �n)xn + �nTxn; n = 0; 1; 2; ::: (M)

is called the Mann iteration (�rst introduced by Mann in1953).
Particular Cases: (1) For �n = � (constant), the iteration (M) reduces to

xn+1 = (1� �)xn + �Txn; n = 0; 1; 2; ::: (Kr)

the so called Krasnoselskij iteration.
(2) For �n = 1 in (M) we obtain

xn+1 = T (xn); n = 0; 1; 2; ::: (P)

the Picard iteration or method of successive approximations (see Berinde�s
Book (2007)).

Theorem 2.3.7. [Ber04] Let E = (E; jj:jj) be a Banach space, K a closed convex

subset of E, and T : K ! K a (��L)-quasi-contractive mapping. Suppose Fix(T ) 6=
?. Let fxng1n=0 be the Mann iteration de�ned by (M) and x0 2 K, where f�ng is the
sequence of positive numbers in [0; 1] satisfying

1P
n=0

�n =1, or equivalently
1Q
n=0
(1� �n) = 0 ([Deu01], p. 145-146) (A)

Then fxng1n=0 converges strongly to the �xed point of T .
Proof. By hypothesis, T has a unique �xed point in K, say u. Also by hypothesis,

there exist 0 � � < 1 and L � 0 such that

jjTx� Tyjj � �jjx� yjj+ Ljjx� Txjj for all x; y 2 X: (DL)
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Now let fxng be the Mann iteration de�ned by (M) and x0 2 K arbitrary. Then

jjxn+1 � ujj = jj(1� �n)xn + �nTxn � (1� �n + �n)ujj

= jj(1� �n)(xn � u) + �n(Txn � u)jj

� (1� �n)jjxn � ujj+ �njjTxn � ujj: (1)

With x = u and y = xn, from (DL) we obtain

jjTxn � ujj � �jjxn � ujj: (2)

By putting (2) in (1) we obtain

jjxn+1 � ujj � (1� �n)jjxn � ujj+ �njjTxn � ujj, by (1)

� (1� �n)jjxn � ujj+ �n:jjxn � ujj, by (2)

= [1� (1� �)�n]:jjxn � ujj

= 
n:jjxn � ujj; 
n = 1� (1� �)�n. (3)

Continuing this process, we obtain

jjxn+1 � ujj � 
n:
n�1:jjxn�1 � ujj

� :::::::::

� 
n:
n�1::::
1:
0:jjx0 � ujj

=
nQ
k=0


k:jjx0 � ujj]: (4)

for all n = 0; 1; 2; :::Using the fact that 0 � � < 1 and �k; �n 2 [0; 1] satisfy (A), it
follows that

lim
n!1

nQ
k=0


n = lim
n!1

nQ
k=0

[1� (1� �)�k] = 0:

Consequently, by (4),

lim
n!1

jjxn+1 � ujj = 0.

Thus fxng converges strongly to u, a �xed point of T . �
Remarks. (1) In the setting of metric linear spaces, the results of this section are

in contrast to those in [Khan88, Khan92, Rh77], where assuming fxng to be strongly
convergent to u 2 K, it is shown that u is �xed point of T . While here (in the setting
of normed spaces), we assume that T has a �xed point u 2 K and we show that fxng
is strongly convergent to u.
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2.4 Fixed Point Theorems for Multivalued Contraction
Mappings

Banach�s Contraction Mappings Principle was extended to set-valued mappings by

S. Nadler [Nad69]. In this section we present �xed point theorem for contraction

multivalued mappings.

Let (X; d) be a metric space. Recall from Section 1.4 that 2X is the family of

all non-empty subsets of X and b(X) (resp., cb(X); k(X)) denote the family of all

non-empty bounded (resp., closed and bounded, compact) subsets of X. Clearly,

k(X) � cb(X) � b(X) � 2X :

De�nition: A function T : X ! 2X is called a multivalued (or set-valued)
mapping. A point x0 2 X is called a fixed point of T if x0 2 T (x0). We de�ne
Fix(T ) = fx 2 X : x 2 T (x)g.

Clearly, if T is single valued, i.e. if T : X ! X, then x0 2 T (x0) means x0 = T (x0).
Example. Let X = [0;1) with usual metric. De�ne T : X ! 2X by

T (x) =

(
[0; x] if x 2 [0; 1)
f0g if x � 1:

, x 2 X:

Then Fix(T ) = [0; 1).

Solution. If x 2 [0; 1), then T (x) = [0; x], so clearly x 2 [0; x] = T (x). If x � 1,
then T (x) = f0g, and so x =2 f0g = T (x). Thus Fix(T ) = [0; 1). �

De�nition: Let (X; d1) and (Y; d2) be metric spaces. A function T : X ! cb(Y )

is said to be a multi-valued contraction mapping of X into Y if there exists a

number �; 0 � � < 1 such that

dH(T (x); T (y)) � �d1(x; y) for all x; y 2 X:

Theorem 2.4.1. [Nad69] Let (X; d) be a complete metric space. If T : X ! cb(X)

is a multi-valued contraction mapping, then T has a �xed point.

Proof. (I) Since T is a contraction, 9 an � 2 [0; 1) such that

dH(T (x); T (y)) � �d(x; y) for all x; y 2 X: (1)

By de�nition of dH ; given any A;B 2 cb(X) and a 2 A; for each " > 0; 9 b = b" 2 B
such that

d(a; b) � d(a;B) + " (since d(a;B) = inf
b2B

d(a; b))

� sup
a02A

d(a0; B) + "

= d(A;B) + "

� dH(A;B) + ": (2)
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(II) Let x0 2 X: Then T (x0) 2 cb(X): Choose any x1 2 T (x0): Now using (2) with
A = T (x0); B = T (x1); x1 2 A and " = �; 9 x2 2 B = T (x1) such that

d(x1; x2) � dH(T (x0); T (x1)) + �:

Next, take A = T (x1); B = T (x2); x2 2 A and " = �2;by (2), 9 x3 2 B = T (x2) such
that

d(x2; x3) � dH(T (x1); T (x2)) + �2:

Continuing this process, we get fxng with xn+1 2 T (xn) such that

d(xn; xn+1) � dH(T (xn�1); T (xn)) + �n: (3)

(III) fxng is Cauchy in (X; d):
For any integer k � 1;

d(xk; xk+1) � dH(T (xk�1); T (xk)) + �
k [using (3)]

� �d(xk�1; xk) + �
k [by (1)]

� �[dH(T (xk�2); T (xk�1)) + �
k�1] + �k [by (3)]

� �[�d(xk�2; xk�1) + �
k�1] + �k [by (1)]

= �2d(xk�2; xk�1) + 2�
k

� :::::::::::

� �kd(x0; x1) + k:�
k: (4)

Taking
1P
k=0

for both sides of (4), we get

1P
k=0

d(xk; xk+1) �
1P
k=0

�kd(x0; x1) +
1P
k=0

k:�k

< 1 (since 0 � � < 1).

Hence d(xk; xk+1) <1 8 k � 1:So by Cauchy criterion, fxng is a a Cauchy sequence.
(IV) Since (X; d) is complete, the sequence fxng converges to z (say) in X: There-

fore, by continuity of T ,the sequence fT (xn)g converges to T (z) and,by continuity of
dH ;

lim
n!1

dH(T (xn); T (z)) = dH(T (z); T (z)) = 0:

i.e,

lim
n!1

maxfd(T (xn); T (z)); d(T (z); T (xn))g = 0
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Then

) lim
n!1

d(T (xn); T (z)) = 0

=) lim
n!1

d(xn+1; T (z)) = 0 (since xn+1 2 T (xn))

=) d(z; T (z)) = 0

=) z 2 T (z) = T (z) (since T (z) 2 cb(X)).

Thus z is a �xed point of T . �

2.5 Retracts in Fixed Point Theory

Recall that: if X is a topological space and A � X, then A is called a retract of X
if there exists a continuous function rA : X ! A such that rA(x) = x for all x 2 A:
rA is called a retraction of X into A. If X is Hausdor¤, and A � X a retract of X,

then A is closed in X. (See Section 1.1; ([KK01], p. 176.)

The concept of a retract is directly related to the problem of the extension of

continuous mappings.

Theorem 2.5.1. (Characterization of Retract) A subspace A is a retract of topo-
logical space X i¤ every continuous mapping of A into an arbitrary topological space

Y can be extended to a continuous mapping of the entire space X into Y .

As examples:
(1) Any topological space X is a retract of X (under the identity mapping).

(2) For each x0 2 X; fx0g is a retract of X (under the constant mapping r : X !
fx0g such that r(x) = x0 for all x 2 fx0g:

(3) If X = Rn and A = B[0; 1] = fx 2 Rn : kxk � 1g; the closed unit ball in Rn,
then A is a retract of X.

(4) If X = [a; b], a closed subspace of R and A = fa; bg, then A is cannot be a

retract of X.

De�nition: Let (X; �) be a topological space and C � X. Then C is said to have
the �xed-point property (in short, FPP) if every continuous map f : C ! C (not

necessarily a self-homeomorphism) has a �xed point.

Theorem 2.5.2. Suppose a topological space X has the FPP. Then any retract

A of X has also the FPP.

Proof. Consider a retraction r : X ! A where A � X and r(a) = a for all a 2 A.
Let i : A! X denote the inclusion of A in X.

Consider any continuous map f : A ! A. We need to show that f has a �xed

point in A. Consider the composition g = i � f � r : X ! X . This is a map that �rst

retracts X to A , then applies f , and then views the resulting point of A as a point
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in X. g is a composite of continuous maps, so g is continuous. Since X has the FPP,

there exists x 2 X such that g(x) = x.

But by construction, clearly g = i � f � r : X ! A, and so g(x) 2 A, hence x 2 A.
But if x 2 A , r(x) = x, so we conclude that x = g(x) = f(r(x)) = f(x). Thus, x 2 A
is a �xed point of f . Thus A has the FPP. �

Remarks. (1) The FPP is a topological invariant, i.e. is preserved by any home-
omorphism.

(2) The FPP is also preserved by any retraction.

(3) According to Brouwer �xed point theorem every compact and convex subset of

an Euclidean space has the FPP.

Next we consider "nonexpansive retracts" which are of interest in �xed point theory.

De�nition: Let X be a real Banach space, C a nonempty closed convex subset of

X, and K � C a nonempty closed set. We do not assume that K is convex. Then K is

said to be a nonexpansive retract of C if either K = ? or there exists a retraction
rK of C onto K which is a nonexpansive mapping.

The following result is a well-known (Section 2.1):

Theorem 2.5.3. If X is a strictly convex Banach space, C a nonempty closed

convex subset of X and T : C ! C is nonexpansive, then Fix(T ) is a closed convex

subset of C.

Recall that: For each x 2 X, let

PC(x) := fz 2 C : d(x; z) = d(x;C)g:

Then each z 2 C is called a point of best approximation of C from x. The map

PC : X ! C is called a proximity map.
The classical result about retraction is:

Theorem 2.5.4. ([KK01], p. 135-136) Let (X;<;>) be a Hilbert space and C a

nonempty closed convex subset of X. Then the proximity mapping PC : X ! C is

nonexpansive.

Proof. See Section 1.7.
Theorem 2.5.5. Let X be a Hilbert space, C a nonempty closed convex subset of

X and T : C ! C a nonexpansive map. Then the proximity mapping PC : X ! C

is nonexpansive, hence also continuous. Consequently, C is a nonexpansive retract of

X.

Remarks. (1) [Bru73b] If X is a Hilbert space and T : C ! C is nonexpansive,

then Fix(T ) is a closed convex subset of C (Section 2.1). If Fix(T ) is nonempty, the

proximity mapping PC : C ! Fix(T ) de�ned by PC(x) = the point of Fix(T ) which

is closest to x, is nonexpansive. Consequently, Fix(T ) is a nonexpansive retract of C.
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(2) [KopRe07] Let C be a nonexpansive retract of the Banach space X. If T :

C ! Y is a Lipschitz mapping, Y a metric space, then T can be extended to all of X

without increasing its Lipschitz constant.

(3) ([KK01], p. 176-177) Every closed convex subset K of Rn is a retract of Rn.
(5) ([KK01], p. 177) The surface S = fx 2 Rn : jjxjj = rg of a nontrivial closed

ball B[0; r] of Rn is not a retract of Rn.
Theorem 2.5.6. (Bruck [Bru72]) Let X be a strictly convex re�exive Banach

space, C a nonempty closed convex subset of X, K � C, and T : C ! C is nonex-

pansive. Then Fix(T ) is a nonexpansive retract of C.

Proof. Suppose K is a nonempty subset of C, and let

F = fT : C ! C, T is nonexpamsive and K � Fix(T )g

De�ne an order on F by setting

f < g if jjf(x)� f(y)jj � jjg(x)� g(y)jj for all (x; y) 2 C � C,

with strict inequality holding for at least one pair (x; y); then let f � g to mean f < g
or f = g. Then � is a partial ordering of F

Every linearly ordered subset of F has a lower bound in F ; the proof of this fact
utilizes the local weak compactness of C and the weak lower semicontinuity of the

norm. Therefore, by Zorn�s lemma, F has a minimal element.

The strict convexity of X implies that for each g 2 F there exists a g0 2 F with

Fix(g0) = Fix(g) and such that whenever

jjg0(u)� g0(w)jj = jju� wjj;

then g0(u)� g0(w) = u�w. For example, we may take g0 = 1
2I +

1
2g0, where I is the

identity function for C.

Suppose f is a minimal function in F , and g is any function of F Let g0 be the

function of the preceding paragraph; then g0f 2 F while g0f � f . By the minimality
of f , therefore g0f � f . Further,

(1) Fix(f) � f(C) � Fix(g0) = Fix(g);
and in particular,

(2) Fix(f) � Fix(g) for all g 2 F :
Taking g = f in (1), we see that Fix(f) = f(C), so that f is a nonexpansive

retraction onto Fix(f). From (2), if f and g are minimal elements of F , then Fix(f) =
Fix(g).

We claim that this common set Fix(f) is the smallest nonexpansive retract K1 of

C with K � K1. If the g of (2) is any nonexpansive retraction with Fix(g) = K1,
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we have from (2) that K � Fix(f) � K1. Thus Fix(f) is the smallest nonexpansive
retract K1 of C with K � K1.

Now suppose Fix(T ) 6= ?. Set K = Fix(T ) and let f be a minimal element of F
Taking g = T in (2), Fix(f) � Fix(T ), while Fix(T ) � Fix(f) in order for f 2 F ;
thus f is a nonexpansive retraction of C onto Fix(f) = Fix(T ). �

Other related concept are:

De�nition: [Bor67; DG82] (i) A subspace A of a topological space X is called a

neighbourhood retract of X if there is in X an open subspace which contains A

and of which A is a retract.

(ii) A metric space X is called an absolute retract (in short AR) if it is a retract
(neighbourhood retract) of every metric space containing X as a closed subspace.

(iii) A metric space X is called an absolute neighbourhood retract (in short,
ANR) if it is a neighbourhood retract of every metric space containing X as a closed

subspace.

(iv) A homotopy between two continuous functions f; g : X ! Y (X;Y topolog-

ical spaces) is de�ned to be a continuous function H : X � [0; 1]! Y such that

H(x; 0) = f(x) and H(x; 1) = g(x) for all x 2 X.

(v) A topological space X is contractible if the identity map on X is homotopic

to some constant map. Intuitively, a contractible space is one that can be continuously

shrunk to a point.

Theorem 2.5.7 (Characterization of AR) For a metric space X to be an AR it

is necessary that it be a retract of some convex subspace of a normed vector space, and

it is su¢ cient that X be a retract of a convex subspace of a locally convex TVS.

Remarks (Properties of AR and ANR).The above characterization means that

ARs have the following properties.

(1) All convex subspaces of locally convex linear spaces are ARs. (Such is the case,

in particular, with a point, an interval, a ball, a straight line, etc.)

(2) Every retract of an AR is again an AR.

(3) Each AR is contractible in itself and is locally contractible.

(4) A metric space Y is an AR i¤, given any metric space X, a closed subspace

A of X and a continuous mapping of A into Y , the mapping can be extended to a

continuous mapping of the entire space X into Y .

(5) ANRs are characterized as retracts of open subsets of convex subspaces of

normed vector spaces. They include all compact polyhedra.

Theorem 2.5.8 [DG82] (a) (Arens-Eells) Any metric space Y can be isometrically
embedded as a closed subset in a normed vector space.
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(b) A metrizable space Y is an AR i¤ it is a retract of every metrizable space in

which it is embedded as a closed set.



Chapter 3

W -Convex Metric Spaces and
their Applications

In this chapter we study W -convex metric spaces (in short, WCM spaces) and their

various properties. These include strict and uniform convexity. Further, we consider its

applications in Fixed Point Theory, Best approximation and Invariant Approximation.

Also we include the convergence of certain iterations of mappings to their �xed points..

3.1 W -Convex Metric Space and Its Properties

This section contains the de�nition of W -convex metric space and its various proper-

ties. This notion of convexity was �rst introduced by Takahashi in 1970 [Tak70], who

also generalize some �xed point theorems of Banach spaces. Subsequently, Machado

(1973), Talman (1977), and Naimpally, Singh and Whit�eld (1983) and Beg and Azam

(1986), among others, developed this theory and obtained �xed point theorems in W -

convex metric spaces.

De�nition: Let (X; d) be a metric space and I = [0; 1]. A function W : X �X �
I �! X is called a W -convex structure if, for any (x; y; t) 2 X �X � I and z 2 X;

d(z;W (x; y; t)) � td(z; x) + (1� t)d(z; y) for all z 2 X: (W )

The set X with this W -convex structureW is called a W -convex metric space
(in short, aWCM space) and is denoted by (X; d;W ):

De�nition: (a) (X; d) is called W
0
-convex if there exists a map W : X � X �

[0; 1]! X such that for any x; y 2 X and t 2 [0; 1], we have

d(x;W (x; y; t)) + d(y;W (x; y; t)) = d(x; y): (W 0)

75
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(b) (X; d) is called W �-convex if there exists a map W : X �X � [0; 1]! X such

that for any x; y 2 X and t 2 [0; 1], we have

d(x;W (x; y; t)) = (1� t)d(x; y) and d(y;W (x; y; t)) = td(x; y): (W �)

Theorem 3.1.1. (W )) (W �)) (W
0
).

Proof. (W )) (W �). First notice that (by taking z = x in (W ))

d(x;W (x; y; t)) � (1� t)d(x; y) (I)

and (by taking z = y in (W ))

d(y;W (x; y; t)) � td(x; y): (II)

Then

d(x; y) � d(x;W (x; y; t)) + d(W (x; y; t); y)

� d(x;W (x; y; t)) + td(x; y)] (by (I)),

or, (1� t)d(x; y) � d(x;W (x; y; t)); hence d(x;W (x; y; t)) = (1� t)d(x; y). Next,

d(x; y) � d(x;W (x; y; t)) + d(W (x; y; t); y)

� (1� t)d(x; y) + d(y;W (x; y; t)), by (II),

or td(x; y) � d(y;W (x; y; t)); hence d(y;W (x; y; t)) = td(x; y). Thus (W )) (W �).

(W �)) (W
0
). By adding the two equations in (W �), we obtain

d(x;W (x; y; t)) + d(y;W (x; y; t)) = td(x; x) + (1� t)d(x; y) = d(x; y): �

Question. Does (W
0
)) (W �) ?

Can we modify Example (1) (below) to show that (W
0
); (W �) ?

We now give two examples on a WCM space.

Example 1. Let K be a convex subset of Banach space (X; k:k): Then K is a

WCM space.

Solution. De�ne W : K �K � I �! K by

W (x; y; t) = tx+ (1� t)y; 8x; y 2 K; t 2 I:

Then W is convex structure on K: So (K;W; d) is a WCM space.

Solution. To show that W is a convex structure, let z 2 X:

d(z;W (x; y; t)) = d(z; tx+ (1� t)y)

= kz � [tx+ (1� t)y]k

= ktz + (1� t)z � [tx+ (1� t)y]k

= kt(z � x) + (1� t)(z � y)k

� t kz � xk+ (1� t) kz � yk

= td(z; x) + (1� t)d(z; y): �
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Remark. Any Banach space is WCM space.

Example 2. Let (X; d) be a metric linear space with d a translation invariant
metric:

d(x; y) = d(x� y; 0) = d(x+ z; y + z) for all x; y; z 2 X:

Suppose also that d also satis�es:

d(tx+ (1� t)y; 0) � td(x; 0) + (1� t)d(y; 0) for all x; y 2 X; 0 � t � 1:

De�ne W : X �X � I �! X by

W (x; y; t) = tx+ (1� t)y; for all x; y 2 X; t 2 I:

Then W is a W -convex structure.

Solution.

d(z;W (x; y; t)) = d(z; tx+ (1� t)y)

= d(z � [tx+ (1� t)y]; 0)

= d(tz + (1� t)z � [tx+ (1� t)y]; 0)

= d(t(z � x) + (1� t)(z � y); 0)

� td(z � x; 0) + (1� t)d(z � y; 0)

= td(z; x) + (1� t)d(z; y):

De�nition: Let (X; d;W ) be a WCM space. A subset K of X is called convex
or (W -convex) if

W (x; y; t) 2 K for any x; y 2 K; 0 � t � 1

Note. In general, W (x; y; t) 6= tx+ (1� t)y, since X need not be a vector space.

Theorem 3.1.2. ([Tak70], p. 143) Let (X; d;W ) be a WCM space. Then

(a) If fK� : � 2 Ag is a family of W -convex subsets of X, then \�2AK� is also
W -convex.

(b) The open and closed balls B(x; r), B[x; r] respectively are W -convex subsets of
X:

(c) For any x; y 2 X and 0 � t � 1;

d(x; y) = d(x;W (x; y; t)) + d(W (x; y; t); y) (W
0
)

Proof. (a) Let x; y 2 \�2AK� and 0 � t � 1. Then

=) x; y 2 K�;8� 2 A;

=) W (x; y; t) 2 K�;8� 2 A; (since each K� is W -convex)

=) W (x; y; t) 2 \�2AK�:
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Hence, \�2AK� is W -convex.
(b) B(x; r) is W -convex: Let u; v 2 B(x; r); 0 � t � 1:Then

d(W (u; v; t); x) = d(x;W (u; v; t))

� td(x; u) + (1� t)d(x; v)

< tr + (1� t)r = r

Hence, W (u; v; t) 2 B(x; r): So B(x; r) isW -convex.
Similarly, B[x; r] is W -convex.

(c)

d(x; y) � d(x;W (x; y; t)) + d(W (x; y; t); y)

� td(x; x) + (1� t)d(x; y) + td(y; x) + (1� t)d(y; y); (by (W ))

= d(x; y)[(1� t) + t] = d(x; y):

Hence, d(x; y) = d(x;W (x; y; t)) + d(W (x; y; t); y): �
Theorem 3.1.3. [Tak70, Mach73, Tal77] Let (X; d;W ) be a WCM space. Then

for any x; y 2 X and t; s 2 [0; 1]; the following hold.
(a) (i) W (x; x; t) = x; (ii) W (x; y; 0) = y; (iii) W (x; y; 1) = x:

(b) (i) d(x;W (x; y; t)) = (1� t)d(x; y):
(ii) d(y;W (x; y; t)) = td(x; y):

(c) d(x; y) = d(x;W (x; y; t)) + d(W (x; y; t); y) (W 0)

(d) jt� sj d(x; y) � d(W (x; y; t);W (x; y; s)):
Proof: (a) (i) To show:W (x; x; t) = x , put z = x and y = x in (W ):Then

d(x;W (x; x; t)) � td(x; x) + (1� t)d(x; x) = 0:

Hence, d(x;W (x; x; t)) = 0; or W (x; x; t) = x.

(a) (ii) To show :W (x; y; 0) = y , put z = y and t = 0 in (W ):Then

d(y;W (x; y; 0)) � 0:d(y; x) + 1:d(y; y) = 0

Hence, d(y;W (x; y; 0)) = 0 or W (x; y; 0) = y .

(a) (iii) To show: W (x; y; 1) = x; put z = x and t = 1 in (W ):Then

d(x;W (x; y; 1)) � 1:d(x; x) + (1� 1)d(x; y) = 0:

Hence, d(x;W (x; y; 1)) = 0; orW (x; y; 1) = x:

(b) (i) To Show: d(x;W (x; y; t)) = (1� t)d(x; y):
First: we want to show that: d(x;W (x; y; t)) � (1 � t)d(x; y):Putting z = x in

(W ),

d(x;W (x; y; t)) � td(x; x) + (1� t)d(x; y) = (1� t)d(x; y): (1)
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Next,

d(x; y) � d(x;W (x; y; t)) + d(W (x; y; t); y)

� d(x;W (x; y; t)) + [td(x; y) + (1� t)d(y; y)] (by (W ));

or (1� t)d(x; y) � d(x;W (x; y; t)): (2)

By (1) and (2), d(x;W (x; y; t)) = (1� t)d(x; y)
(b) (ii) First: we want To show that: d(y;W (x; y; t)) � td(x; y):Putting z = y in

(W );

d(y;W (x; y; t)) � td(y; x) + (1� t)d(y; y) = td(x; y): (3)

Next,

d(x; y) � d(x;W (x; y; t)) + d(W (x; y; t); y) (by (T-Ineq))

� [td(x; x) + (1� t)d(x; y)] + d(W (x; y; t); y) (by (W ));

or td(x; y) � d(W (x; y; t); y): (4)

By (3) and (4), d(y;W; (x; y; t)) = td(x; y):

(c) As already proved in (W 0), d(x; y) = d(x;W (x; y; t)) + d(W (x; y; t); y):

(d)

jt� sj d(x; y) = j(t� s)d(x; y)j = jtd(x; y)� sd(x; y)j

= jd(y;W (x; y; t))� d(y;W (x; y; s))j ; (by (b)(ii))

� d(W (x; y; t); d(W (x; y; s)):

Hence, jt� sj d(x; y) � d(W (x; y; t);W (x; y; s)): �
Theorem 3.1.4. ([Tal77], p. 64) Let (X; d;W ) be a WCM space. Then W is a

continuous at each point (x; x; t) of X �X � I:
Proof. Let f(xn; yn; tn)g1n=1 be a sequence inX�X�I which converges to (x; x; t):

By previous Theorem, W (x; x; t) = x so it su¢ ces to show that fW (xn; yn; tn)g1n=1
converges to x:Let " > 0:Since the sequences fxng1n=1 and fyng1n=1 both converge to
x,there exists an N 2 N such that d(xn; x) < "

2 and d(yn; x) <
"
2 for all n � N:Now

d(x;W (xn; yn; tn)) � tnd(x; xn) + (1� tn)d(x; yn)

� 1:d(x; xn) + 1:d(x; yn)

<
"

2
+
"

2
for all n � N

= ":

Thus fW (xn; yn; tn)g1n=1 converges to x: �
Theorem 3.1.5. ([PhSu11], p. 3-4) Let (X; d;W ) be a WCM space, and let
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(H) = d(W (x; y; t);W (x0; y; t)) � t:d(x; x0) for all x; x0; y 2 X and t 2 [0; 1]:
(H1) � d(W (x; y; t);W (x; y0; t)) � (1� t):d(y; y0) for all x; y; y0 2 X and t 2 [0; 1]:
(S) � d(W (x; y; t);W (u; v; t)) � t:d(x; u) + (1� t):d(y; v) for all x; y; u; v 2 X and

t 2 [0; 1]:
(C) �W (x; y; t) =W (y; x; 1� t) for all x; y 2 X and t 2 [0; 1]:
(I) � d(W (x; y; t);W (x; y; s)) � jt� sj :d(x; y):
Then (a) (S) =) (H) and also (S) =) ((H1).

(b) If (C) holds, then (H), (H1).

(c) (C) and (H) =) (S); hence also (C) and (H1) =) (S).

(d) (C), (H) and (I) =)W : X �X � I �! X is jointly continuous.

Proof. (a) To show: (S) =) (H); put u = x0 and v = y in (S). Then

d(W (x; y; t);W (x0; y; t)) � t:d(x; x0) + (1� t)d(y; y) (by (S))

= t:d(x; x0).

To show: (S) =) (H1); put u = x and v = y0 in (S). Then

d(W (x; y; t);W (x; y0; t)) � td(x; x) + (1� t)d(y; y0) (by (S))

= (1� t)d(y; y0).

(b) First (C) and (H)) (H1):

d(W (x; y; t);W (x; y0; t)) � d(W (y; x; 1� t);W (y0; x; 1� t)) by (C)

� (1� t):d(y; y0) (by (H)).

Next (C) and (H1)) (H):

d(W (x; y; t);W (x0; y; t)) = d(W (y; x; 1� t);W (y; x0; 1� t)) by (C)

� [1� (1� t)]:d(x; x0) (by (H1)).

= t:d(x; x0)

(c) To show: (C) and (H) =) (S); let x; y; u; v 2 X and t 2 [0; 1]:Then

d(W (x; y; t);W (u; v; t)) � d(W (x; y; t);W (u; y; t)) + d(W (u; y; t);W (u; v; t))

� d(W (x; y; t);W (u; y; t))

+d(W (y; u; 1� t);W (v; u; 1� t)) (by (C)).

� t:d(x; u) + [1� (1� t)]d(y; v) (by (H)).

= td(x; u) + (1� t)d(y; v):

Similarly, (C) and (H1) =) (S). In fact, if (C) holds, then (H) , (H1) by (b);

hence, by above argument, (C) and (H1) =) (S).
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(d) To show: (C), (H) and (I) =) W : X �X � I �! X is jointly continuous.

Let (x0; y0; t0) 2 X �X � I; and let " > 0: First: we de�ne a metric d� on X �X � I
as mapping d� : (X �X � I)� (X �X � I) �! R by

d�((x; y; t); (x0; y0; t0)) = d(x; x0) + d(y; y0) +
��t� t0��

� maxfd(x; x0); d(y; y0);
��t� t0��g

for all x; x0; y; y0 2 X and t; t0 2 [0; 1]. We want to prove that 9 � > 0 such that

d(W (x; y; t);W (x0;y0; t0)) < " if d�((x; y; t); (x0; y0; t0)) < �:

We claim that for some constant A;B;C > 0;

d(W (x; y; t);W (x0;y0; t0)) � Ad(x; x0) +Bd(y; y0) + C
��t� t0��

Now,

d(W (x; y; t);W (x0;y0; t0))

� d(W (x; y; t);W (x0; y; t)) + d(W (x0; y; t);W (x0; y0; t))

+d(W (x0; y0; t);W (x0;y0; t0))

� d(W (y; x; 1� t);W (y; x0; 1� t)) + (1� t)d(y; y0)

+ jt� t0j d(x0; y0) (by (C),(H) and (I)).

� [1� (1� t)]d(x; x0) + (1� t)d(y; y0) + jt� t0j d(x0; y0) (by (H)).

= td(x; x0) + (1� t)d(y; y0) + jt� t0j d(x0; y0):

= Ad(x; x0) +Bd(y; y0) + C jt� t0j (A = t; B = (1� t); C = d(x0; y0))

� Kd(x; x0) +Kd(y; y0) +Kjt� t0j (K = maxfA;B;Cg)

= K[d(x; x0) + d(y; y0) + jt� t0j]:

= Kd�((x; y; t); (x0; y0; t0)): (1)

Take � = "
K : if d

�((x; y; t); (x0; y0; t0)) < �; then by (1),

d(W (x; y; t);W (x0;y0; t0)) < K:� = K:
"

K
= ":

Hence W is continuous at (x0; y0; t0): �

3.2 Uniform Convexity in WCM Spaces

In this section, we make a study of uniform convexity in WCM spaces as introduced

by Shimizu and Takahashi in [ST96]. Also we present some properties of WCM spaces

so that uniform convexity satisfy some of them. Further, we consider the relation
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between WCM spaces and Banach spaces for uniform convexity property. We shall

see that in a uniformly WCM space (X; d;W ), properties (C) and (I) always hold;

further each of (H); (H1) implies that (S) holds.

De�nition: A WCM space (X; d;W ) is called a uniformly WCM space if for
any " > 0; 9 � = �(") > 0 such that for all r > 0 and x; z1;z2 2 X with d(x; z1) �
r; d(x; z2) � r,

d(z1; z2) � r:" =) d(x;W (z1; z2;
1

2
)) � (1� �)r: (UC)

Remark. In the de�nition of uniformlyWCM space, clearly " 2 (0; 2] and � 2
(0; 1]:

Proof. Indeed, from the de�nition,

0 < r:" � d(z1; z2) � d(z1; x) + d(x; z2) � r + r = 2r:

Since r > 0, � � 2, and so " 2 (0; 2]: Also from the de�nition,

0 � d(x;W (z1; z2;
1

2
)) � (1� �)r:

Since r > 0; 1� � � 0, and so � � 1. �
Theorem 3.2.1. ([PhSu11], p. 3) Any uniformly WCM space (X; d;W ) satis�es

the property (C):

W (x; y; t) =W (y; x; 1� t) for all x; y 2 X, t 2 [0; 1]: (C)

Proof. First we note that if t = 0 or t = 1 or x = y;then (C) holds trivially by
using Theorem 3.1.3(a), as follows:

If t = 0, W (x; y; 0) = y, W (y; x; 1) = y;

If t = 1, W (x; y; 1) = x, W (y; x; 0) = x;

If x = y, W (x; x; t) = x, W (x; x; 1� t) = x.

Now, suppose 0 < t < 1 and x 6= y: From Theorem 3.1.3(b), we recall that:

d(x;W (x; y; t)) = (1� t)d(x; y), d(y;W (x; y; t)) = td(x; y), (1)

d(x;W (y; x; 1� t)) = (1� t)d(x; y), d(y;W (y; x; 1� t)) = td(x; y). (2)

Suppose (C) does not hold. i.e., W (x; y; t) 6=W (y; x; 1� t). Put

z1 = W (x; y; t), z2 =W (y; x; 1� t);

r1 = (1� t)d(x; y) > 0, r2 = td(x; y) > 0;

"1 =
d(z1; z2)

r1
> 0 and "2 =

d(z1; z2)

r2
> 0 (since z1 6= z2):



3. W -Convex Metric Spaces and their Applications 83

Then, by (1)-(2),

d(x; z1) = d(x;W (x; y; t)) = (1� t)d(x; y) = r1 � r1;

d(x; z2) = d(x;W (y; x; 1� t)) = (1� t)d(x; y) = r1 � r1;

d(z1; z2) = r1"1 � r1"1:

Hence, by (UC ),9 �1 = �("1) > 0 such that

d(x;W (z1; z2;
1

2
)) � (1� �1)r1: (3)

Similarly,

d(y; z1) = d(y;W (x; y; t)) = td(x; y) = r2 � r2;

d(y; z2) = d(y;W (y; x; 1� t)) = td(y; x) = r2 � r2;

d(z1; z2) = r2"2 � r2"2:

Hence, by (UC ),9 �2 = �("2) > 0 such that

d(y;W (z1; z2;
1

2
)) � (1� �2)r2: (4)

By using (3) and (4),

d(x; y) � d(x;W (z1; z2;
1

2
)) + d(y;W (z1; z2;

1

2
))

� (1� �1)r1 + (1� �2)r2
< r1 + r2 = d(x; y):

This is a contradiction. Thus (C) holds. �
Theorem 3.2.2. ([PhSu11], p. 4) In a uniformly WCM space (X; d;W ), the

property (H)) (S) and also (H1)) (S), where

d(W (x; y; t);W (x0; y; t)) � td(x; x0) for all x; y; y0 2 X, t 2 [0; 1]; (H)

d(W (x; y; t);W (x; y0; t)) � (1� t)d(y; y0) for all x; y; y0 2 X, t 2 [0; 1]; (H1)

d(W (x; y; t);W (u; v; t)) � td(x; u) + (1� t)d(y; v) for all x; y; u; v 2 X, t 2 [0; 1](S)

Proof. Let x; y; u; v 2 X and t 2 [0; 1]: Then, using property (H) and property
(C) (which holds by Theorem 3.2.1),

d(W (x; y; t);W (u; v; t))

� d(W (x; y; t);W (u; y; t)) + d(W (u; y; t);W (u; v; t))

� d(W (x; y; t);W (u; y; t)) + d(W (y; u; 1� t);W (v; u; 1� t)) (by (C))

� td(x; u) + (1� t)d(y; v) (by (H)).
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Similarly, (H1)) (S).

Theorem 3.2.3. ([KaePa08], p. 8) Any uniformly WCM space (X; d;W ) satis�es

the property (I):

d(W (x; y; t);W (x; y; s)) � jt� sj d(x; y) for all x; y 2 X; s; t 2 [0; 1]: (I)

Proof. Let x; y 2 X and s; t 2 [0; 1]: If t = 0 or s = 0; then (I) holds by Theorem
3.1.3, as follows:

If t = 0;

d(W (x; y; 0);W (x; y; s)) = d(y;W (x; y; s)) = sd(x; y) = j0� sj d(x; y);

if s = 0;

d(W (x; y; t);W (x; y; 0)) = d(W (x; y; t); y) = td(x; y) = jt� 0j d(x; y)

Suppose t; s 2 (0; 1]: We may assume that t < s: Put

u = W (x; y; 1� t); z =W (x; y; 1� s),

and let v = W (x; z; 1� t

s
):

Then, using Theorem 3.1.3 (b) ,

d(x; v) = d(x;W (x; z; 1� t

s
))

= [1� (1� t

s
)]d(x; z) =

t

s
d(x; z)

=
t

s
d(x;W (x; y; 1� s))

=
t

s
[1� (1� s)]d(x; y) = td(x; y):

So,

d(x; v) =
t

s
d(x; z) = td(x; y): (1)

Next, using again Theorem 3.1.3 (b),

d(y; v) = d(y;W (x; z; 1� t

s
))

� d(y; z) + d(z;W (x; z; 1� t

s
))

= d(y;W (x; y; 1� s)) + (1� t

s
)d(x; z)

= (1� s)d(y; x) + (1� t

s
)d(x;W (x; y; 1� s))

= (1� s)d(x; y) + (1� t

s
)[1� (1� s)]d(x; y)

= (1� s)d(x; y) + (1� t

s
)sd(x; y)

= [1� s+ s� t

s
:s]d(x; y) = (1� t)d(x; y):
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Also,

(1� t

s
)d(x; y) +

t

s
d(y; z) = (1� t

s
)d(x; y) +

t

s
d(y;W (x; y; 1� s))

= (1� t

s
)d(x; y) +

t

s
(1� s)d(x; y)

= (1� t

s
+
t

s
� t

s
:s)d(x; y) = (1� t)d(x; y):

So,

d(y; v) � (1� t)d(x; y) = (1� t

s
)d(x; y) +

t

s
d(y; z): (2)

Next, using uniform W -convexity, we prove that u = v. Suppose u 6= v; and put

p =W (u; v;
1

2
); r = td(x; y) and r0 = (1� t)d(x; y):

First using (UC ), we show that (i) d(x; p) < d(x; u) = r;(ii ) d(y; p) < d(y; u) = r0.

Now, using Theorem 3.1.3(b).

d(x; u) = d(x;W (x; y; 1� t)) = [1� (1� t)]d(x; y) = td(x; y) = r (say).

Also, by (1),

d(x; v) = td(x; y) = r:

Since u 6= v; d(u; v) 6= 0: Taking " = d(u;v)
r > 0; we have

d(u; v) = r:" � r:":

By (UC ), 9 � = �(") > 0; 0 < � < 1; such that

d(x;W (u; v;
1

2
)) � r(1� �);

or d(x; p) � r(1� �) < r = d(x; u): (3)

Now, using Theorem 3.1.3(b).

d(y; u) = d(y;W (x; y; 1� t)) = (1� t)d(x; y) = r0 (say).

Also, by (2),

d(y; v) � (1� t)d(x; y) = r0

Taking "0 = d(u;v)
r0 > 0; d(u; v) = r0:"0 � r0:"0: So by (UC ), 9 �0 = �0("0) > 0; 0 < �0 < 1;

such that

d(y;W (u; v;
1

2
)) � r0(1� �0):

Or

d(y; p) � r0(1� �0) < r0 = d(y; u) (4)
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Using (3) and (4)

d(x; y) � d(x; p) + d(p; y) < r + r0

= td(x; y) + (1� t)d(x; y) = d(x; y):

This is a contradiction. Thus u = v:

Finally, since t < s,

d(u; z) = d(v; z) = d(z; v) = d(z;W (x; z:1� t

s
))

= (1� t

s
)d(x; z) = (1� t

s
)d(x;W (x; y; 1� s))

= (1� t

s
)[1� (1� s)]d(x; y)

=
s� t
s
:sd(x; y) = (s� t)d(x; y)

= js� tj d(x; y) = jt� sj d(x; y):

Or

d(W (x; y; 1� t);W (x; y; 1� s)) � jt� sj d(x; y):

Replacing 1� t by t and 1� s by s; we have

d(W (x; y; t);W (x; y; s)) � j[(1� (1� t))� (1� (1� s))]j d(x; y)

= jt� sj d(x; y): �

Theorem 3.2.4. ([PhSu11], p. 3) Uniformly convex Banach spaces are uniformly
WCM spaces.

Proof. As in Section 3.1, (X; k:k) is a WCM space by de�ningW : X�X�I �! X

by

W (x; y; t) = tx+ (1� t)y, x; y 2 X; t 2 [0; 1]:

Now (X; k:k) is a uniformly convex means given " > 0; there exists a � > 0 such that
for all x; y 2 X withkxk � 1; kyk � 1,

kx� yk � ")




x+ y2





 � (1� �): (1)

Let z 2 X .Change x! z�x; y ! z�y; 1! r and "! r":Thus kz � xk � r; kz � yk �
r and k(z � x)� (z � y)k � r": Then by (1)



(z � x) + (z � y)2





 = 



z � x+ y2




 � (1� �)r: (2)

Now

d(z;W (x; y;
1

2
)) =





z �W (x; y; 12)




 = 



z � [12x+ (1� 12)y)]






=





z � x+ y2




 � (1� �)r; by (2):

Thus X is uniformlyWCM space. �
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3.3 Fixed Points and T-Invariant Approximation inWCM
Spaces

In this section, we present some results of Beg-Shahzad-Iqbal [BSI92] on Fixed Points,

Best Approximation and Invariant Approximation on a WCM spaces.

De�nition: Let (X; d) be a metric space and T : X ! X a mapping with

Fix(T ) 6= ?. Then X is said to have the T -invariant approximation property if,
for any C � X with T (C) � C and any u 2 Fix(T );

PC(u) \ Fix(T ) 6= ?:

i.e. 9 a z 2 PC(u) such that T (z) = z. In this case we also say that X has T -invariant
approximation.

De�nition: Let (X; d;W ) be a WCM space. A subset K of X is said to be p-
starshaped if there exists p 2 K such that W (x; p; t) 2 K for all x 2 K and t 2 [0; 1].
Clearly p-starshaped subsets of X contain all convex subsets of X as a proper subclass.

Recall from Section 3.1 that (X; d;W ) is said to satisfy property (H) if

d(W (x; p; t);W (y; p; t)) � td(x; y) for all x; y; p 2 X; t 2 [0; 1]. (H)

Note. Property (H) is always satis�ed in any normed space X = (X; jj:jj).
Proof. Let x; y; p 2 X and t 2 I. In this case, W (x; y; t) = tx+ (1� t)y. Hence

d(W (x; p; t);W (y; p; t)) = jjtx+ (1� t)p� ty �+(1� t)pjj

= tjjx� yjj = td(x; y).

For more properties, we refer to Guay, Singh and Whit�eld [GSW82].

De�nition: Let K be a nonempty subset of a convex metric space X. A mapping

T : K ! K is said to be a Banach operator if there exists a constant � such that
0 � � < 1 and for each x 2 K

d(T 2x; Tx) � �d(Tx; x):

Every contraction mapping is a Banach operator but not conversely. A Banach oper-

ator need not be continuous, nor need its �xed points be unique.

Theorem 3.3.1. Let C be a closed subset of a metric space (X; d), and let T :

C ! C be a continuous Banach operator. Then T has a �xed point in C each of the

following cases:

(a) (X; d) is complete.

(b) T (C) is compact.

Proof. See Section 2.1.
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Theorem 3.3.2. [BSI92, p. 98] Let (X; d;W ) be a WCM space with W continuous

and satisfying property (H) and C be a closed and p-starshaped subset of X. If T is

a nonexpansive self mapping on C and T (C) is compact, then T has a �xed point.

Proof. De�ne a sequence of maps Gn,

Gnx =W (Tx; p; tn),

where ftng � R is a �xed sequence with 0 � tn < 1 and tn ! 1 (e.g., tn = n
n+1). Each

Gn maps C into itself because T : C ! C and C is p-starshaped. Moreover each Gn
is a continuous Banach operator:

d(Gnx;G
2
nx) = d(W (Tx; p; tn);W (T (Gnx); p; tn))

� tnd(Tx; T (Gnx)) (by (H))

� tnd(x;Gnx): (since T is nonexpansive)

Since T (C) is compact, Gn(C) is compact too, and previous theorem further im-

plies: for eachGn there exists a �xed point xn such that xn = Gnxn =W (Txn; p; tn):As

Gn(C) is compact andGn(C)� Gn(C); fW (Txn; p; tn)g has a subsequence fW (Txni ; p; tn)g =
Gnixni converging, e.g., to y.

lim
i!1

W (Txni ; p; tn) = lim
i!1

Gnixni = y: (1)

By continuity of T and W ,

lim
i!1

W (Txni ; p; tn) =W (T ( lim
i!1

xni); p; lim
i!1

tn) =W (Ty; p; 1) = Ty. (2)

From (1) & (2), Ty = y: �
Remark. As immediate corollary to Theorem 3.3.2, we have Theorem 4 of [Hab89].
Best Approximation
Let C be a closed convex subset of a WCM space (X; d;W ). The a function

S : C ! C into itself is said to be a¢ ne if

S(W (x; y; t)) =W (Sx; Sy; t)

whenever t 2 [0; 1] \Q and x; y in C, where Q denotes, the set of rational numbers.
Theorem 3.3.3. [Jung76] Let (X; d) be a compact metric space and T; S : X ! X

be two commuting mappings such that T (X) � S(X), S is continuous and d(Tx; Ty) <
d(Sx; Sy) whenever Sx 6= Sy. Then Fix(T ) \ Fix(S) is a singleton.

Theorem 3.3.4. [BSI92, p. 99] Let (X; d;W ) be a compact WCM space with

W continuous and satisfying condition (H). Let T; S : X ! X be operators, C be a
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subset of X such that T : @C ! C and x� 2 Fix(T ) \ Fix(S). Further T and S

satisfy

d(Tx; Ty) � d(Sx; Sy)

for all x and y in PC(x�) [ fx�g; and let S be continuous and a¢ ne on PC(x�) and
STx = TSx for all x in PC(x�). If PC(x�) is nonempty, compact and q-starshaped

with respect to a point q 2 Fix(S) and if S(PC(x�)) = PC(x�); then

PC(x
�) \ Fix(T ) \ Fix(S) 6= ?:

Proof. If y 2 PC(x�), then

d(Ty; x�) = d(Ty; Tx�) (since x� 2 Fix(T ))

� d(Ty; T (W (y; x�; t))) + d(T (W (y; x�; t)); Tx�)

� d(Sy; S(W (y; x�; t))) + d(S(W (y; x�; t)); Sx�)

= d(Sy; Sx�) (since X is WCM)

= d(Sy; x�) (since x� 2 Fix(S))

= d(x�; C) (since S(PC(x�)) = PC(x�); Sy 2 PC(x�)):

Thus we obtain that Ty 2 PC(x�) (since Ty 2 C). Thus T maps PC(x�) into itself.
Let fkng be a sequence, kn = 1� 1

n and with kn ! 1. De�ne T : PC(x�)! PC(x
�)

as

Gn(x) =W (Tx; q; kn) for all x 2 PC(x�):

Since S is a¢ ne and commutes with T on PC(x�); we have

GnSx = W (TSx; Sq; kn) (since q 2 Fix(S))

= W (STx; Sq; kn)

= SW (Tx; q; kn) = SGnx:

Thus S commutes with T for each n for all x in PC(x�) and Gn(PC(x�)) � PC(x�) =
S(PC(x

�)):Furthermore, by (H),

d(Gnx;Gny) = d(W (Tx; q; kn);W (Ty; q; kn))

� knd(Tx; Ty) � knd(Sx; Sy) < d(Sx; Sy);

whenever Sx 6= Sy. By Theorem 3.3.3, we have Fix(Gn)\Fix(S) = fxng for each n.
Since PC(x�) is compact, fxng has a subsequence xni ! z, (say). Now xni = Gnixni =

W (Txni ; q; kni):Since kni ! 1, then

lim
i!1

xni = lim
i!1

W (Txni ; q; kni) =W (Tz; q; 1) = Tz
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Hence Tz = z. Thus z 2 PC(x�) \ Fix(T ): The continuity of S further implies that

Sz = S[ lim
i!1

xni ] = lim
i!1

xni = z;

that is, z 2 Fix(S): �
Remark. Theorem 3.3.4 generalized serval known results including among these

are Brosowski [Bros69] Sahab and Khan [SK88] and Singh [Singh79b].

Invariance of Best Approximation
In [Mein63] Meinardus introduced the notion of invariant approximation. The aim

of this section is to prove some results regarding invariant approximation in WCM

spaces.

De�nition: A metric space X is called 
-chainable if for every x; y 2 X; there
exists an 
-chain that is a �nite set of points x = x0; x1; x2; ::::; xn = y (n may depend

on x and y) such that d(xi�1; xi) � 
; (i = 1; 2; :::; n).
Theorem 3.3.5. [BSI92, p. 100] Let (X; d;W ) be a 
-chainable WCM space with

W continuous and satisfying property (H) and T : X ! X be a mapping. Let C be a

subset of X such that T (C) � C and x0 2 Fix(T ). If PC(x0) is nonempty, compact,
and p-starshaped and T is:

(i) continuous on PC(x0) and

(ii) d(x; y) � d(x0; C) implies d(Tx; Ty) � d(x; y) for all x; y 2 PC(x0) [ fx0g.
Then Fix(T ) \ PC(x0) 6= ?; i.e. C contains a T -invariant point, which is a best

approximation to x0 in C.

Proof. Similar to the proof of Theorem 3.3.4, only need to notice that the corre-

sponding Gn are uniformly locally contractive and have �xed point xn from Theorem

5.2 of [Ed61]. �
Remark. With the notion of convex metric space, our Theorem 3.3.5 generalizes

Theorem 1 of Singh [Singh79b].

If an operator T : X ! X leaves a subset Y of X invariant, then a restriction of

T to Y will be denoted by the symbol T=Y .

Theorem 3.3.6. [BSI92, p. 100] Let (X; d;W ) be a WCM space with W contin-

uous and satisfying property (H) and T be a nonexpansive mapping on X. Let C be

a T -invariant subset of X and T=C be compact and x be a T�invariant point. If the
set of best C�approximants to x is nonempty, convex and compact, then it contains
a T -invariant point.

Proof. Let K = PC(x) = fy 2 C : d(x; y) = d(x;C)g. Then the set K is

T -invariant. To see this, let z 2 T (K); then 9 an s� 2 K such that z = T (s�): Now

d(x; z) = d(x; T (s�)) = d(T (x); T (s�)) � d(x; s�) = d(x;C):
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Since C be a T -invariant subset of X , z 2 C: Thus

d(x; z) = d(x;C);

hence z 2 K: Also K is closed and convex. Since K is bounded subset of C and T=C

is compact, the T (K) is compact. Theorem 3.3.2 implies that T has a �xed point in

K. �

3.4 Simultaneous Approximation in WCM Spaces

In this section we discuss the problem of best simultaneous approximation (b.s.a).

Motivated by this problem if sets of elements A and B is given in metric space (X; d);

one might like to approximate all the elements of B simultaneously by a single element

of A. This type of problem arises when a function being approximated is not known

precisely but is known to belong to a set. Several mathematicians have studied this

problem of simultaneous approximation in normed linear spaces. We will study this

problem in WCM spaces as given by Narang in [Nar99].

Let K � (X; d). Recall that: An element a0 2 K is called a best approximant
to x in K if

d(x; a0) = d(x;K).

De�nition: Let K � (X; d). Given any bounded subset F of X, de�ne

�(F;K) = sup
y2F

d(y;K) = sup
y2F

inf
x2K

d(y; x):

An element k� 2 K is said to be a best simultaneous approximation (b.s.a) to F
if

sup
y2F

d(y; k�) = �(F;K):

C. B. Dunham, J. B. Diaz and H. W. McLaughlin have considered the problem

of best simultaneous approximation in the following case: X = C [a; b]; K a non

empty subset of X and F = fp1; p2g:Goel, Holland, Nasim, and Sahney studied the
problem when X is a normed linear space, K any subset of X and F = fx1; x2g � X:
Using the same procedure as in [GHNS74] it is possible to study the problem when

F = fx1; x2; ::::; xng: Holland Sahney and Tzimbalario studied the problem when F is

a compact subset of a normed linear space.

Now we recall a few de�nitions.

De�nition: A bounded subset F of a metric space (X; d) is said to be remotal
with respect to a subset K of X if for each k 2 K there exists a point p0 2 F farthest
from k;i.e.

d(k; p0) � d(k; p) for all p 2 F:
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De�nition: A WCM spaces (X; d) is said to be strictly W -convex [Nar81] if for
every x; y 2 X and r > 0,

d(u; x) � r; d(u; y) � r imply d(u;W (x; y; t)) < r unless x = y

where u is arbitrary but �xed point of X:

We show that the problem of b.s.a is equivalent to the problem of minimizing

certain functional. For this we prove a lemma

Lemma 3.4.1. ([Nar99], p. 62) Let K be any subset of a metric space (X; d) and

F a bounded subset of X: Then the functional ' : K ! R de�ned by

'(k) = sup
p2F

d(p; k); k 2 K;

is continuous.

Proof. Let " > 0 be given. For any p 2 F and k; k0 2 K we have

d(p; k) � d(p; k0) + d(k; k0)

and so

sup
p2F

d(p; k) � sup
p2F

d(p; k0) + d(k; k0)

i.e.

'(k)� '(k0) � d(k; k0):

Interchanging k and k0; we get

'(k0)� '(k) � d(k; k0):

and so ��'(k)� '(k0)�� � d(k; k0):
Therefore if d(k; k0) < " then j'(k)� '(k0)j < " and so ' is continuous. �

Note. In normed vector spaces this lemma was proved in [HST76].
If there exists a k� 2 K such that '(k�) = inf

k2K
'(k) then k� 2 K is a b.s.a to F:

So the problem of b.s.a reduces to the problem of minimizing the functional on K and

so we have

Theorem 3.4.2. ([Nar99], p. 62) Let F be a bounded subset of a metric space

(X; d) and K a subset of X such that the continuous functional ' : K ! R de�ned
by '(k) = supp2F d(p; k) attains its in�mum at some point of K then there always

exists a b.s.a in K to F .

Since for compact sets K and for sets K which are approximatively compact with

respect to F ( i.e. any sequence (kn) in K satisfying supp2F d(kn; p ) ! �(F;K) is

compact in K); we can �nd k� 2 K such that '(k�) = infk2K '(k); we have
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Corollary 3.4.3. ([Nar99], p. 63) Let K be a compact subset of a metric space

(X; d) and F be any bounded subset of X Then there exists a b.s.a in K to F:

Corollary 3.4.4. [Go84] If F is a bounded subset of a metric space (X; d) and K
is approximatively compact with respect to F then there exists a b.s.a in K to F

The following result which generalizes Lemma 3 of [HST76] deals with the convexity

of the set of best simultaneous approximants

Lemma 3.4.5. ([Nar99], p. 63) Let K be a W -convex subset of a WCM space

(X; d) and F a bounded subset of X: If u; v 2 K are b.s.a to F then W (u; v; t) is also

a b.s.a in K to F for every t 2 I:
Proof. Since u; v 2 K are b.s.a to F ,

sup
p2F

d(p; u) = �(F;K) = sup
p2F

d(p; v):

For any p 2 F; consider d(p;W (u; v; t)) � td(p; u) + (1� t)d(p; v):This implies

sup
p2F

d(p;W (u; v; t)) � t sup
p2F

d(p; u) + (1� t) sup
p2F

d(p; v)

= t �(F;K) + (1� t)�(F;K)

= �(F;K) � sup
p2F

d(p;W (u; v; t))

as W (u; v; t) 2 K by the convexity of K: Therefore,

sup
p2F

d(p;W (u; v; t)) = �(F;K);

proving thereby that W (u; v; t) is a b.s.a in K to F for every t 2 I: �
The following result deals with the uniqueness of b.s.a.

Theorem 3.4.6. ([Nar99], p. 63) Let K be a W -convex subset of a strictly WCM

space (X; d) and F be a subset of X which is remotal w.r.t. K: Then there exists at

most one b.s.a in K to F:

Proof. Suppose u; v; (u 6= v) are two b.s.a in K to the set F; i.e.

sup
p2F

d(p; u) = �(F;K) = sup
p2F

d(p; v):

By Lemma 3.4.5, W (u; v; t) 2 K is also a b.s.a to F , i.e.

sup
p2F

d(p;W (u; v; t)) = �(F;K)

for every t 2 I: Let t 2 I be arbitrary. Keep it �xed. Since F is remotal w.r.t. K,

there exists an element p� 2 F such that

d(p�;W (u; v; t)) = sup
p2F

d(p;W (u; v; t)) = �(F;K): (1)
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Now d(p�; u) � �(F;K) and d(p�; v) � �(F;K) and since the space is strictly W -

convex, we have

d(p�;W (u; v; t)) < �(F;K) unless u = v.

This contradicts (1) and hence the uniqueness. �
Combining Theorems 3.4.2 and 3.4.6 we have

Theorem 3.4.7. ([Nar99], p. 63) Let K be a W -convex subset of a strictly

WCM space (X; d) and F a subset of X which is remotal w.r.t. K If the continuous

functional ' : K ! R de�ned by '(k) = supp2F d(p; k) attains its in�mum on K then

there exists a unique b.s.a in K to F:

Since the functional ' attains its in�mum when K is compact subset of a metric

space (see [Nar83]) or K is approximatively compact w.r.t. a bounded subset F of a

metric space (see [Go84]), we have

Corollary 3.4.8. ([Nar99], p. 64) Let K be compact W -convex subset of a strictly

WCM space(X; d) and F a subset of X which is remotal w.r.t K then there exists a

unique b.s.a in K to F:

Corollary 3.4.9. ([Nar99], p. 64) Let F be a bounded subset of a strictly WCM

space (X; d); K a W -convex subset of X which is appoximatively compact w.r.t. F

and F is remotal w.r.t. K then there exists a unique b.s.a in K to F:

Remarks. (1) Uniqueness of elements of b.s.a is also guaranteed if the functional
' de�ned in Lemma 3.4.1 attains its in�mum at exactly one k� 2 K:

(2) When F is a singleton say fp g then �(F;K) = infk2K d(p; k) = d(p;K):So

the problem of b.s.a reduces to the problem of best approximation and consequently,

results proved in this section extends known results on best approximation.

3.5 Best Approximation and Fixed Points inWM-Starshaped
Metric Spaces

In this section, we present some results of Al-Thaga� [AlThag95]. He considered more

general notion of convexity, called WM -starshaped metric spaces by considering the

map W : X�M � I ! X instead of W : X�X� I ! X where M � (X; d). Further,
he obtained some results on the existence of �xed points of best approximation.

De�nitions: Let X be a metric space, T : X ! X, D � X, and p 2 X. Then
(1) T is 
-nonexpansive on D if d(Tx; Ty) � d(x; y) for every x; y 2 D with

d(x; y) � 
.
(2) T is 
-contraction on D if d(Tx; Ty) � �d(x; y) for some � 2 [0; 1) and for

every x; y 2 D with d(x; y) � 
.
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Recall from Section 3.3 that: D is a 
-chainable metric space if for any pair
x; y 2 D, there exists a �nite chain of points x0; x1; :::; xn in D with x0 = x and

xn = y such that d(xi�1; xi) � 
, for i = 1; 2; :::; n:
Remarks. (1) Brosowski [Bros69] proved that if X is a normed vector space,

T : X ! X is nonexpansive with a �xed point p, K � X with T (K) � K, then T has
a �xed point in PK(p) provided that PK(p) is nonempty, compact and convex.

(2) Singh ([Singh79a], Theorem 1) relaxed the convexity of PK(p) be starshaped-

ness.

(3) However, Hicks and Humphries ([HH82], p. 221) showed that the conclusion

of Singh�s result still holds whenever T (K) � K is replaced by T (@K) � K .

(4) Subrahmanyam ([Su77], Theorem 3) proved that if X is a normed vector space,

T : X ! X is d(p;K)-nonexpansive with a �xed point p, K � X with T (K) � K,

then T has a �xed point in PK(p) provided that K is a �nite-dimensional subspace of

X.

(5) However, Singh ([Singh79b], Theorem 1) showed that the conclusion of Sub-

rahmanyam�s result still holds whenever the �nite-dimensionality of K is replaced by

the following conditions:

(i) PK(p) is nonempty, compact and starshaped, and

(ii) T is continuous on PK(p).

Theorem 3.5.1. [Ed61] Let D be a complete and 
-chainable metric space. If

T : D ! D is a 
-contraction, then T has a unique �xed point in D.

De�nition: Let X be a metric space, M � X and I = [0; 1].

(a)X isWM-starshaped if there exists a mappingW : X�M�I ! X, satisfying

d(z;W (x; q; t)) � td(z; x) + (1� t)d(z; q)

for every z; x 2 X; all q 2M and all t 2 I:
(b) X is strong WM-starshaped if it is WM -starshaped and W satis�es (H):

d(W (x; q; t);W (y; q; t)) � td(x; y); (H)

for every x; y 2 X; all q 2M and all t 2 I:
(c) (i) X is strong convex if it is strong X-starshaped.
(ii) X is convex if it is X-starshaped.
(iii) X is starshaped if it is fqg-starshaped for some q 2 X:
Convex and starshaped metric spaces were introduced by Takahashi [Tak70]. Each

normed vector space X is a strong convex metric space with W de�ned by

W (x; q; t) = tx+ (1� t)q for every x; q 2 X and t 2 I:
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De�nition: Let X be a WM -starshaped metric space. A subset D of X is q-
starshaped if there exists q 2 D \M with W (D � fqg � I) � D. A q-starshaped

subset of a convex metric space is called starshaped.
Theorem 3.5.2. ([AlThag95], p. 614) Let X be a strong WM -starshaped metric

space and D � X. If D is compact, 
-chainable and q-starshaped, and T : D ! D is


-nonexpansive, then T has a �xed point in D.

Proof. For each positive integer n, let tn = n
n+1 and Gnx = W (Tx; q; tn) for all

x 2 D: By the strong WM -starshapedness of X and the 
-nonexpansiveness of T on

D, each Gn satis�es

d(Gnx;Gny) = d(W (Tx; q; tn);W (Ty; q; tn))

� tnd(Tx; Ty) � tnd(x; y)

for every x; y 2 D with d(x; y) � 
: Clearly, Gn : D ! D (since D is q-starshaped,

Gnx =W (Tx; q; tn) 2 D for all x 2 D ). So each Gn is a 
- contraction selfmap of D.

Since D is 
-chainable, Theorem 3.5.1 shows that each Gn has a unique �xed point

xn 2 D. By the compactness of D, there exists a subsequence fxnig of fxng with
lim
i!1

xni = x0 2 D. Since

d(Txni ; xni) = d(Txni ; Gnxni) = d(Txni ;W (Txni ; q; tni))

� (1� tni)d(Txni ; q)

for all i and tni ! 1

lim
i!1

d(Txni ; xni) � lim
i!1

(1� tni)d(Txni ; q) = 0

So lim
i!1

d(Txni ; xni) = 0: Now, the 
-nonexpansiveness of T onD implies its continuity,

so

lim
i!1

d(Txni ; xni) = 0 =) d( lim
i!1

Txni ; lim
i!1

xni) = 0

=) d(T ( lim
i!1

xni); lim
i!1

xni) = 0 =) d(Tx0; x0) = 0:

Hence x0 is a �xed point of T . �
The following is a result of Dotson ([Do73], Theorem 1).

Corollary 3.5.3. ([AlThag95], p. 614) Let X be a normed vector space and

D � X. If D is compact and starshaped and if T : D ! D is nonexpansive, then T

has a �xed point in D.

Proof. Suppose D is p-starshaped for some p 2 D. We will use Theorem 3.5.2 in

the proof of this corollary. So we want to show that:

(a) X is strong Wfpg-starshaped, (b) D is 
-chainable, (c) T is 
-nonexpansive.
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(a) We consider M = fpg. De�ne a mapping W : X � fpg � I ! X by

W (x; p; t) = tx+ (1� t)p where x 2 X and t 2 I = [0; 1]:

Clearly W (x; p; t) 2 X (since X is a normed vector space). Let u; x 2 X and t 2 [0; 1]:
Then,

d(u;W (x; p; t)) = ku�W (x; p; t)k

= k[tu+ (1� t)u] + [tx+ (1� t)p]k

= kt(u� x) + (1� t)(u� p)k

� t ku� xk+ (1� t) ku� pk

= td(u; x) + (1� t)d(u; p):

Therefore, X is Wfpg-starshaped. Let x; y 2 X; p 2M and t 2 [0; 1]: Next,

d(W (x; p; t);W (y; p; t)) = kW (x; p; t)�W (y; p; t)k

= k[tx+ (1� t)p]� [ty + (1� t)p]k

� t kx� yk+ (1� t) kp� pk

= t kx� yk+ 0

= td(x; y):

Hence, X is strong Wfpg-starshaped.
(b) D is 
-chainable: Let 
 > 0, and x 6= y 2 D. We need to �nd a �nite chain

of points fz0; z1; :::; zkg in D with z0 = x and zk = y such that jjzi�1 � zijj � 
, for

i = 1; 2; :::; k.

Suppose D is q-starshaped for some q 2 D. Then [x; q]; [q; y] � D. Now

[x; q] = f(1� t)x+ tq : 0 � t � 1g

= fx+ t(q � x) : 0 � t � 1g: (1)

Suppose x 6= q, and let 
 > 0 and c = jjq � xjj > 0. Choose N � maxf2; 2
c g, so that
2

cN � 1, 2

N � 1 . Then, for each i = 1; 2; :::; N ,

2
i

cN2
=
2


cN
:
i

N
� 1:1 = 1,

and so, by (1),

xi = x+
2
i

cN2
(q � x) 2 [x; q]:
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Further,

jjxi�1 � xijj = jj[x+ 2
(i� 1)
cN2

(q � x)]� [x+ 2
i

cN2
(q � x)]jj

= jj 2
i
cN2

(q � x)� 2


cN2
(q � x)� 2
i

cN2
(q � x)]jj

= jj � 2


cN2
(q � x)jj = 2


cN2
jjq � xjj = 2


cN2
:c

=
2

N2
:
 =

2

N
:
1

N
:
 � 
:

Hence fx0; x1; :::; xNg is a �nite 
-chain in D for the pair (x; q) with x0 = x and

xN = q.

Similarly, we obtain a �nite 
-chain fy0; y1; :::; yMg in D for the pair (q; y) with

y0 = q and yM = y. Thus

fx0; x1; :::; xN ; y1; :::; yMg = fz0; z1; :::; zkg

is a �nite chain in D for the pair (x; y). with z0 = x0 = x, zk = yM = y and

jjzi�1 � zijj � 
, for i = 1; 2; :::; k:
(c) T is 
-nonexpansive: Let 
 > 0; x; y 2 D with d(x; y) � 
: Now,

d(Tx; Ty) � d(x; y); (since T is nonexpansive).

So, from (a), (b), (c), we can apply Theorem 3.5.2. Hence, T has a �xed point in D.

�
Theorem 3.5.4. ([AlThag95], p. 615) Let X be a strong WM -starshaped met-

ric space and D � X. If D is compact and q-starshaped and if T : D ! D is

nonexpansive, then T has a �xed point in D.

The proof of Theorem 3.5.4 is similar to the one given for Theorem 3.5.2; however,

we use Banach�s contraction principle instead of Theorem 3.5.1.

Note. The Corollary 3.5.3 follows also from Theorem 3.5.4.

Best Approximation in WM-Starshaped Metric Spaces
Lemma 3.5.5. ([AlThag95], p. 615) Let X be a strong WM -starshaped metric

space, K � X and p 2 X. If PK(P ) is q-starshaped, then PK(p) is d(p;K)-chainable.
Proof. For x; y 2 PK(p): Let

x0 = x; x1 =W (x; q;
1

2
); x2 =W (y; q;

1

2
); x3 = y:

Since PK(p) is q-starshaped, then x0; x1; x2; x3 belongs to PK(P ) and q 2 PK(p): Now,
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the strong WM -starshapedness of X implies that

d(x0; x1) = d(x;W (x; q;
1

2
)) � 1

2
d(x; q) � 1

2
[d(x; p) + d(p; q)]

=
1

2
[d(p;K) + d(p;K)] = d(p;K);

d(x1; x2) = d(W (x; q;
1

2
);W (y; q;

1

2
)) � 1

2
d(x; y)

� 1

2
[d(x; p) + d(y; p)] =

1

2
[d(p;K) + d(p;K)] = d(p;K);

d(x2; x3) = d(W (y; q;
1

2
); y) � 1

2
d(y; q)

� 1

2
[d(y; p) + d(q; p)] =

1

2
[d(p;K) + d(p;K)] = d(p;K):

Therefore PK(p) is d(p;K)-chainable. �
Lemma 3.5.6. ([AlThag95], p. 615) Let X be a WM -starshaped metric space,

K � X and p 2 X. Then PK(p) � @K \K.
Proof. Let y 2 PK(p) and let tn = n

n+1 for each positive integer n:Then

d(p;W (y; p; tn)) � tnd(p; y) < 1:d(p;K) = d(p;K) (since tn < 1).

which implies that W (y; p; tn) =2 K for every n (since d(p;K) = inf
z2K

d(p; z)). Since

d(y;W (y; p; tn)) � (1� tn)d(y; p) = (1� tn)d(p;K)

for all n, then

lim
n!1

d(y;W (y; p; tn)) � lim
n!1

(1� tn)d(p;K)

= lim
n!1

(1� ( n

n+ 1
))d(p;K)

= 0:

So lim
n!1

d(y;W (y; p; tn)) = 0: Then lim
n!1

W (y; p; tn) = y: (i.e., for each " > 0; 9 an
integer N such that d(W (y; p; tn); y) < " for all n � N). Thus each neighborhood of
y contains at least one W (y; p; tn) (W (y; p; tn) 2 X rK). Hence y 2 @K: �

Theorem 3.5.7. ([AlThag95], p. 615) Let X be a strong WM -starshaped metric

space, T : X ! X, K � X, and p 2 X a �xed point of T . If PK(p) is compact and

q-starshaped, T (K) � K, as T is d(p;K)-nonexpansive on PK(P ) [ fpg, then T has
a �xed point in PK(p).

Proof. Let y 2 PK(p): Then Ty 2 K (since PK(p) � K and T (K) � K). and, by
the d(p;K)-nonexpansiveness of T on

PK(p) [ fpg,

d(Ty; p) = d(Ty; Tp) � d(y; p) with d(y; p) � d(p;K):
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So d(Ty; p) � d(p;K): But it is impossible that d(Ty; p) < d(p;K) (since Ty 2 K).
Then d(Ty; p) = d(p;K): Thus Ty 2 PK(p) and so T : PK(p)! PK(p): Now, Theorem

3.5.2, with D = PK(p), and Lemma 3.5.5 show that T has a �xed point in PK(p): �
Theorem 3.5.8. ([AlThag95], p. 615) Let X be a strong WM -starshaped metric

space, T : X ! X, K � X, and p 2 M a �xed point of T . If PK(p) is compact and

q-starshaped, T (@K \K) � K, and T is d(p;K)-nonexpansive on PK(p) [ fpg, then
T has a �xed point in PK(p):

Proof. Let y 2 PK(p). Then

y 2 @K \K (by Lemma 3.5.6).

Since T (@K \ K) � K; then Ty 2 K: by the d(p;K)-nonexpansiveness of T on

PK(p) [ fpg,

d(Ty; p) = d(Ty; Tp) � d(y; p) with d(y; p) � d(p;K):

So d(Ty; p) � d(p;K): But it is impossible that d(Ty; p) < d(p;K) (since Ty 2 K).
Then

d(Ty; p) = d(p;K):

Thus Ty 2 PK(p):Therefore T : PK(p) ! PK(p): Now, Theorem 3.5.2. with D =

PK(p), and Lemma 3.5.5 show that T has a �xed point in PK(p). �
Corollary 3.5.9. ([AlThag95], p. 616) Let X be a strong WCM space, T : X !

X, K � X, and p 2 X a �xed point of T . If PK(p) is compact and starshaped,

T (@K \K) � K, and T is d(p;K)-nonexpansive on PK(p) [ fpg, then T has a �xed
point in PK(p):

Proof. If X is a strong convex metric space, then it is strong X-starshaped. Thus

immediately, we can apply Theorem 3.5.8. �

3.6 Convergence of Iterations to Fixed Points in WCM
Spaces

In this section, we present some results of Ciric-Ume-Khan [CUK03] and D. Ariza-

Ruiza [ArRu12]. Motivated by Dotson�s example [Do70], he considered a certain class

of mappings which includes the classes of mappings studied by Zam�rescu, Ciric,

Berinde and others and presented several results about convergence of distinct iterative

processes in WCM spaces.

We recall: Let D be a nonempty subset of a metric space (X; d). A mapping

T : D ! X is said to be contraction if there exists a constant � 2 [0; 1) such that,

d(Tx; Ty) � �d(x; y): (C)
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for all x; y 2 D. The well known Banach�s �xed point theorem asserts that if D = X,

T is contraction and (X; d) is complete, then T has a unique �xed point p in X, and

for any x0 2 X the sequence fTn(x0)g converges to p. This result has been extended
by several authors to some classes of mappings by changing the contractive condition

(C). For instance, two conditions that can replace (C) in Banach�s theorem are the

following:

(I) (Kannan, [Kan68]) There exists � 2 [0; 12) such that, for all x; y 2 D;

d(Tx; Ty) � �[d(x; Tx) + d(y; Ty)]: (K)

(II) (Chatterjea [Cha72]) There exists 
 2 [0; 12) such that, for all x; y 2 D;

d(Tx; Ty) � 
[d(x; Ty) + d(y; Tx)]: (Ch)

The conditions (C), (K) and (Ch) are independent (see [ArJiLo11], [Rh77] and

[CS97]).

In 1972, Zam�rescu [Zam72], combining the conditions (C), (K) and (Ch), obtained

a �xed point theorem for the class of mappings T : X ! X for which there exists � 2
[0; 1) such that

d(Tx; Ty) � �:maxfd(x; y); 1
2
[d(x; Tx) + d(y; Ty)];

1

2
[d(x; Ty) + d(y; Tx)g: (Z)

A mapping satisfying (Z) is commonly called a Zam�rescu mapping. Note that the

class of Zam�rescu mappings is a subclass of the class of mappings T satisfying the

following condition: there exists 0 � h < 1 such that

d(Tx; Ty) � h:maxfd(x; y); 1
2
[d(x; Tx) + d(y; Ty)]; d(x; Ty); d(y; Tx)g: (R)

This condition was �rst considered by Ciric [Cir71] who obtained a �xed point theorem

for mappings satisfying (R). Recently, this class of mappings has been studied by

Ra�q [Ra06]. Notice that every mapping T satisfying (R) is a quasicontraction. The

concept of quasicontraction was introduced and investigated by Ciric [Cir71] in 1971,

who obtained an existence �xed point theorem under the following condition: there

exists a constant k 2 [0; 1) such that

d(Tx; Ty) � k:maxfd(x; y); d(x; Tx); d(y; Ty); d(x; Ty); d(y; Tx)g: (QC)

Recently, Berinde [Ber04] proved a �xed point result using a new condition, which is

independent of (QC). This condition can be stated as follows: there exist two constants

� 2 [0; 1)and L � 0 such that

d(Tx; Ty) � �:d(x; y) + L:d(y; Tx) (B)
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for all x; y 2 D: To obtain the uniqueness of the �xed point of a mapping satisfying
(B), Berinde considered the following contractive condition, quite similar to (B). There

exist two constants � 2 [0; 1) and L1 � 0 such that

d(Tx; Ty) � �:d(x; y) + L1:d(x; Tx) (B�)

for all x; y 2 D:
Berinde noticed that the identity mapping on any metric space satis�es (B) but

does not (B�). With the following example, we prove that both classes of mappings are

independent.

Example 1. Let X = fa; bg be any set together with the discrete metric d. The
mapping T : X ! X;given by Ta = b and Tb = a, satis�es (B�) with � 2 (0; 1)
arbitrary and L1 � 1� �. Indeed,

d(Ta; T b) = 1 � � + L1 = �d(a; b) + L1d(a; b) = �d(a; b) + L1d(a; Ta);

similarly,

d(Tb; Ta) = 1 � � + L1 = �d(b; a) + L1d(b; a) = �d(b; a) + L1d(b; T b):

Moreover, T does not satisfy (B), since if there exist � 2 [0; 1) and L � 0 such that T
veri�es (B), then

d(Ta; T b) � �d(a; b) + Ld(b; Ta):

that is, 1 � �; which is a contradiction.
Recall that: A W -convex metric space (X; d;�) = (X; d;W ) is a metric space

(X; d) together with a convexity mapping W = � : X �X � [0; 1]! X satisfying

d(z;W (x; y; t)) � td(z; x) + (1� t)d(z; y)

d(z; tx� (1� t)y) � td(z; x) + (1� t)d(z; y);

for all x; y; z 2 X; t 2 [0; 1]: Here we denote W (x; y; �) = tx� (1� t)y
Example 2. Obviously, any normed space is a WCM space. Spaces of hyperbolic

type, which were introduced by Goebel and Kirk [GK83] are convex metric spaces.

As we shall see later, Hyperbolic spaces in the sense of Koolenbach [Koh05] are also

WCM spaces; other examples of WCM spaces are CAT(0)-spaces and R-trees (we will
see that later on).

Every WCM space satis�es the following property, which is very important.

Theorem 3.6.1. ([ArRu12], p. 95) If (X; d;�) is a WCM space, then

d(x;W (x; y; t)) = (1� t)d(x; y) and d(y;W (x; y; �)) = td(x; y)

or d(x; tx� (1� t)y) = (1� t)d(x; y) and d(y; tx� (1� t)y) = td(x; y)
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for all x; y;2 X and t 2 [0; 1]:
Recall that:

W (x; y; 0) = 0x� 1y = y;

W (x; y; 1) = 1x� 0y = x

W (x; x; t) = tx� (1� t)x = x

A nonempty subset C of aW -convex metric space (X; d;�) is said to beW -convex
if tx� (1� t)y 2 C for all x; y 2 C and � 2 [0; 1]. A nice feature of our setting is that
any W -convex subset is itself a W -convex metric space with the restriction of d and

� to C.
Recall some iterative processes: Let D be a nonempty subset of a metric space

(X; d) and T : D ! D a self-mapping. Let x0 2 D be �xed, we can consider the

sequence fxngn2N de�ned by

xn+1 := T (xn) = T
n+1(x0); for all n � 0 (1)

The sequence de�ned by (1) is known as the Picard iteration.

Let C be a closed subset of a complete metric space (X; d). If T : C ! C satis�es

any of the conditions (C), (K), (Ch), (Z), (R), (QC), (B), then T has at least a �xed

point. Moreover, the Picard iteration converges to a �xed point of T . However, if any

of this conditions is slightly weaker, then the Picard iteration need not converge to a

�xed point of the operator T . The following trivial example shows this behavior.

Example. Let X = fx1; x2; x3g, with the discrete metric d, and T : X ! X

de�ned byT (x1) = x3; T (x2) = x2 and T (x3) = x1. It is easy to check that T is

nonexpansive, that is, d(Txi; Txj) � d(xi; xj) for all i; j 2 f1; 2; 3g. Moreover, the
Picard iteration of T , with the starting point x1 or x3, does not converge to x2, which

is the �xed point of T .

In view of above example, we can state that some other iteration processes must

be considered. Bearing in mind the iterative processes that exist in the Banach space

setting, we shall introduce the most important iterative processes in the convex metric

spaces. In order to do this, C will be a convex subset of a convex metric space (X; d;�)
and T : C ! C a mapping.

For any given x0 in C, the sequence fxng1n=0 de�ned by

xn+1 =W (xn; Txn; �) = �xn � (1� �)Txn; for all n � 0: (2)

where � 2 [0; 1], is called Krasnosel�skij iteration [Kr55].
Mann iteration [Ma53] is essentially an averaged algorithm which generates a se-

quence recursively

xn+1 =W (xn; Txn; �n) = �nxn � (1� �n)Txn; for all n � 0: (3)
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where the initial guess x0 2 C and f�ngn�0 is a sequence in [0; 1]:
Ishikawa iteration [Ish76] is the following process of two steps: let x0 2 X be �xed,

consider the sequence fxngn�0 de�ned by(
yn =W (xn; Txn; �n) = �nxn � (1� �n)Txn;

xn+1 =W (xn; T yn; �n) = �nxn � (1� �n)Tyn; for all n � 0;
(4)

where f�ngn�0 and f�ngn�0 are sequence in [0; 1]:
The class of '-quasinonexpansive mappings
Example. (Dotson [Do70]) Consider the following self-mapping T : R ! R,

de�ned by

Tx =

(
x
2 sin(

1
x) if x 6= 0;

0 if x = 0:

Then T satis�es the property

d(Tx; p) � 1

2
d(x; p),

for all x 2 R, p 2 Fix(T ) = f0g:
Solution. Indeed, since p = 0;if x 6= 0;

d(Tx; 0) = jTx� 0j = jTxj =
����x2 sin( 1x)

����
=

1

2

����x sin( 1x)
���� = 1

2
jxj
����sin( 1x)

����
� 1

2
jxj = 1

2
d(x; 0). �

Thus, motivated by this example, we can consider the following class of mappings.

De�nition: Let D be a nonempty subset of a metric space (X; d). We say that

T : D ! X is a '-quasinonexpansive mapping if Fix(T ) 6= ? and there exists a

function ' : R+ ! R+ such that

d(Tx; p) � '(d(x; p)): (5)

for all x 2 X, p 2 Fix(T ):
Remarks. (1) Recently, Olatinwo have studied intensively contractive conditions

that includes as a particular case the class of '-nonexpansive mappings (see [Ol08],

[Ol11]) and many other papers by the same author).

(2) Notice that if we take ' as the identity function, we obtain the concept of quasi-

nonexpansiveness, which was introduced by Tricomi [Tri16] for real functions and later

studied by Diaz and Metcalf [DM67], [DM69] and by Dotson [Do70] for mappings in

Banach spaces (see [Ber07, Section 3.5, Section 4.2] for detailed discussion of this and

related notions.).
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(3) One can easily show that every contraction mapping is a '-quasinonexpansive

mapping, with '(t) = �t for t 2 R+, using Banach�s �xed point theorem.
(4) However, Dotson�s example shows that the class of '-quasinonexpansive map-

pings properly includes contractive mappings.

(5) Next, we now proceed to show that the contractive mappings from previous

subsection are in the class of '-quasinonexpansive mappings. Moreover, this example

can be generalized in such a way that the resulting map is not contractive.

Example 1. Let ' : R+ [ f0g ! R+ [ f0g be a function such that '(t) < t for
each t > 0. Let X be the real line with the usual metric. The mapping T : R ! R
de�ned by

Tx =

(
'(x) sin( 1x) if x 6= 0;
0 if x = 0:

is a '-quasinonexpansive mapping but T is not a contraction mapping.

Example 2. ([Ber07], p. 39) (i) Any Kannan mappings T : X ! X is a '-

quasinonexpansive mappings with

'(t) :=
�

1� � t for all t 2 R
+, � 2 [0; 1

2
):

(ii) Any Chatterjea mapping T : X ! X is a '-quasinonexpansive mapping, with

'(t) =



1� 
 t for all t 2 R
+, 
 2 [0; 1

2
):

Solution. (i) If T is a Kannan mapping. Then from (K) with y = p 2 Fix(T ) we
get

d(Tx; p) � �[d(x; Tx) + d(p; Tp)] = �d(x; Tx) � �[d(x; p) + d(p; Tx)]

� �[d(x; p) + �[d(p; Tp) + d(x; Tx)]] = �[d(x; p) + �d(x; Tx)]

� �[d(x; p) + �[d(x; p) + d(p; Tx)]]

= �[d(x; p) + �d(x; p) + �d(p; Tx)]

� �[d(x; p) + �d(x; p) + �[�[d(p; Tp) + d(x; Tx)]

= �[d(x; p) + �d(x; p) + ��d(x; Tx)]

� ::::::::::::::::::::::::::

� �d(x; p) + �2d(x; p) + �3d(x; p) + :::(geometric series )

=
�

1� �d(x; p)

(ii) Similar to part (i). �
The following result, which is implicitly included in [Ber07], shows that this fact

is still true for a more general class of mappings.
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Theorem 3.6.2. [Ber07] Let (X; d) be a complete metric space. If T : X ! X

satis�es (QC), then T is a '-quasinonexpansive mapping, with '(t) := maxfk; k
1�kgt:

Proof. Ciric [Cir74] proved that T has a unique �xed point p in X. Taking y = p
in (QC) we get

d(Tx; p) = d(Tx; Tp)

� k maxfd(x; p); d(x; Tx); d(p; Tp); d(x; Tp); d(p; Tx)g

� k maxfd(x; p); d(x; p) + d(p; Tx); d(p; Tx)g:

for each x in X. Since 0 � k < 1, it is impossible that d(Tx; p) � k d(p; Tx): Thus

d(Tx; p) � k maxfd(x; p); d(x; p) + d(p; Tx)g:

If maxfd(x; p); d(x; p) + d(p; Tx)g = d(x; p) + d(p; Tx); then

d(Tx; p) � k[d(x; p) + d(p; Tx)]

� k[d(x; p) + k[d(x; p) + d(p; Tx)]

� k[d(x; p) + kd(x; p) + k[d(x; p) + d(p; Tx)]

� :::::::::::::::::::::::::::::::::::::

� kd(x; p) + k2d(x; p) + k3d(x; p) + ::::

=
k

1� kd(x; p)

Thus we deduce

d(Tx; p) � maxfk; k

1� kgd(x; p);

for every x 2 X: �
In the case of mappings satisfying (R), we can obtain a better function '.

Theorem 3.6.3. [Ber07] Let (X; d) be a complete metric space. If T : X ! X

satis�es (R), then T is a '-quasinonexpansive mapping, with '(t) := ht:

Proof. By Ciric [Cir74], we know that T has a unique �xed point in X, say p. If
we take y = p in (R) we get

d(Tx; p) = d(Tx; Tp)

� h:maxfd(x; p); 1
2
[d(x; Tx) + d(p; Tp)]; d(x; Tp); d(p; Tx)g

� h:maxfd(x; p); 1
2
[d(x; p) + d(p; Tx)]; d(p; Tx)g

for each x in X:Since 0 � h < 1, it is impossible that d(Tx; p) � h.d(p; Tx): Thus

d(Tx; p) � h:maxfd(x; p); 1
2
[d(x; p) + d(p; Tx)];
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Using a similar argument in Theorem 3.6.2 we get

d(Tx; p) � maxfh; h

2� hgd(x; p) = hd(x; p);

for every x 2 X: �
A trivial veri�cation shows that if T has at least one �xed point and satis�es (B�),

then T is a '-quasi-nonexpansive mapping, with '(t) = �t for each t 2 R+.
We must notice that there exist other classes of mappings which belong to the class

of '-quasi-nonexpansive mappings. For example, in [Jag77].

Convergence results
Here and subsequently, � denotes the family of functions ' : R+ ! R+ such that

' is continuous and '(t) < t for all t > 0. Before we discuss our results, we state an

elementary numerical result.

Lemma 3.6.4. ([ArRu12], p. 98) Let f�ngn2N be a real sequence in [0; 1] and let
fdngn2N be a sequence of nonnegative real numbers such that

dn+1 � �ndn + (1� �n)'(dn) for all n 2 N; (6)

where ' 2 � . If f�ngn2N converges to � 2 (0; 1], then we have lim
n!1

dn = 0:

Proof. Since '(t) < t for all t 2 R+, we get that fdngn2N is nonincreasing since

dn+1 � �ndn + (1� �n)'(dn) < �ndn + (1� �n)dn = dn

and, therefore, convergent to a nonnegative real number d. We shall show that d = 0.

In order to do this, we assume that d > 0 and we obtain a contradiction as follows.

Since �n ! � 2 (0; 1]; as n!1 , taking limits in (6) we have that

d � �d+ (1� �)'(d) < �d+ (1� �)d = d;

which is a contradiction. Therefore, d = 0, that is, lim
n!1

dn = 0: �
We now prove the convergence of the Mann iteration process on a WCM space,

when the operator T is assumed to be only '-quasinonexpansive.

Theorem 3.6.5. ([ArRu12], p. 98) Let C be a convex subset C of a WCM space:

Assume that T : C ! C is a '-quasinonexpansive mapping with ' 2 � . Let f�ngn2N
be a real sequence in [0; 1] such that f�ngn2N converges to some positive real number.
Then, for any x0 in X, the sequence fxngn2N de�ned by (3) converges to the unique
�xed point of T .

Proof. Let us �rst prove that T has a unique �xed point in C. Suppose that

p; q 2 Fix(T ), with p 6= q: Using (5) and the property of ', we obtain

d(q; p) = d(Tq; p) � '(d(q; p)) < d(q; p):
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which is a contradiction. Let x0 2 C be arbitrary. Now, we shall prove that the Mann
iteration fxngn2N converges to p, where Fix(T ) = fpg. Since

d(xn+1; p) = d(W (xn; Txn; �n); p)

= d(�nxn � (1� �n)Txn; p)

� �nd(xn; p) + (1� �n)d(Txn; p)

� �nd(xn; p) + (1� �n)'(d(xn; p)) (T is '-quasi-NE).

for every n 2 N, by Lemma 3.6.4 lim
n!1

d(xn+1; p) = 0 so we deduce that fxngn2N
converges to p. �

Remark. Clearly, if we take f�ngn2N as a constant sequence in [0; 1], we get a
result about the convergence of Krasnosel�skij iteration.

Notice that if in the above result we take �n = 0 for all n � 0; we obtain a result
about the convergence of the Picard iteration process. Moreover, this result still holds

if it is just assumed that C is a nonempty subset of a metric space (X; d):

Corollary 3.6.6. ([ArRu12], p. 99) Let C be a nonempty subset of a metric space
(X; d). If T : C ! C is a '-quasinonexpansive mapping, with ' : R+ ! R+ being
a continuous function such that '(t) < t for all t > 0, then the sequence fxngn2N
de�ned by (1) converges to the unique �xed point of T , for any x0 in X.

Now, we present some results of Ciric-Ume-Khan [CUK03] on the convergence of

Ishikawa iterates.

In 1983, Naimpally and Singh [NS83] have studied the mappings which satisfy the

contractive de�nition introduced in [Cir77]. They proved the following:

Theorem 3.6.7. [NS83] Let X be a normed vector space and C be a nonempty

closed convex subset of X. Let T : C ! C be a selfmapping satisfying

kTx� Tyk � h:maxfkx� yk ; kx� Txk ; ky � Tyk ; kx� Tyk+ ky � Txkg (A)

for all x; y in C, where 0 � h < 1 and let fxng be the sequence of the Ishikawa-scheme
associated with T , that is, x0 2 C,

yn = (1� �n)xn + �nTxn; n � 0;

xn+1 = (1� �n)xn + �nTyn; n � 0;

where 0 � �n, �n � 1. If f�ng is bounded away from zero and if fxng converges to
p, then p is a �xed point of T .

In [CUK03] generalizing of the result of Naimpally and Singh to a pair of mappings

S and T , de�ned on a WCM , which satisfy the following condition:

d(Sx; Ty) � h[d(x; y) + d(x; Ty) + d(y; Sx)]; (B)
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where 0 < h < 1:

It is clear that the condition (B) is very general, since by the triangle inequality,

condition (B) is always satis�ed with h = 1.

Theorem 3.6.8. ([CUK03], p. 124) Let C be a nonempty closed convex subset of

a WCM space X and let S; T : C ! C be self-mappings satisfying (B) for all x; y

in C. Suppose that fxng is Ishikawa type iterative scheme associated with S and T ,
de�ned by

x0 2 C; (1)

yn = W (Sxn; xn; �n); n � 0 (2)

xn+1 = W (Tyn; xn; �n); n � 0 (3)

where f�ng and f�ng satisfy 0 � �n, �n � 1 and f�ng is bounded away from zero. If

fxng converges to some point p 2 C, then p is the common �xed point of S and T .
Proof. From properties of convex structure, we have:

d(x;W (x; y; t)) = (1� t)d(x; y); d(y;W (x; y; t)) = td(x; y):

From (3) it follows that

d(xn; xn+1) = d(xn;W (Tyn; xn; �n)) = �nd(xn; T yn):

Since xn ! p as n ! 1, d(xn; xn+1) ! 0 as n ! 1: Since f�ng is bounded away
from zero, it follows that

lim
n!1

d(xn; T yn) = 0: (4)

From (2) we have

d(xn; yn) = d(xn;W (Sxn; xn; �n)) = �nd(xn; Sxn);

d(Sxn; yn) = d(Sxn;W (Sxn; xn; �n)) = (1� �n)d(xn; Sxn):

Thus we have

d(Sxn; T yn) � h[d(xn; yn) + d(xn; T yn) + d(yn; Sxn)] (using (B))

= h[�nd(xn; Sxn) + d(xn; T yn) + (1� �n)d(xn; Sxn)]

= h[d(xn; Sxn) + d(xn; T yn)]:

Now

d(Sxn; T yn) � h[d(xn; Sxn) + d(xn; T yn)]

� h[d(Sxn; T yn) + d(xn; T yn) + d(xn; T yn)]

or d(Sxn; T yn)� hd(Sxn; T yn) � 2hd(xn; T yn):
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Hence

d(Sxn; T yn) �
2h

1� hd(xn; T yn) (h < 1).

Taking the limit as n!1; we obtain, by (4),

lim
n!1

d(Sxn; T yn) = 0:

Since Tyn ! p as n!1 (by 4), it follows that Sxn ! p as n!1: Since

d(xn; yn) = �nd(xn; Sxn) � d(xn; Sxn) (�n � 1)

and

lim
n!1

d(xn; Sxn) = 0;

it follows also that yn ! p as n!1:
From (B) again, we have

d(Sxn; Tp) � h[d(xn; p) + d(xn; Tp) + d(p; Sxn)]:

Taking the limit as n!1; we obtain

d(p; Tp) � hd(p; Tp):

Since h < 1; d(p; Tp) = 0: Hence Tp = p. Similarly, from (B),

d(Sp; Tyn) � h[d(p; yn) + d(p; Tyn) + d(yn; Sp)]:

Taking the limit as n!1; we get

d(Sp; p) � hd(p; Sp):

Hence Sp = p: Therefore, Sp = Tp = p and the proof is complete. �
Corollary 3.6.9. ([CUK03], p. 126) Let X be a normed vector space and C be

a closed convex subset of X. Let S; T : C ! C be two mappings satisfying (B) and

fxng be the sequence of Ishikawa-scheme associated with S and T ; for x0 2 C,

yn = (1� �n)xn + �nTxn; n � 0;

xn+1 = (1� �n)xn + �nTyn; n � 0:

If f�ng is bounded away from zero and fxng converges to p, then p is a common �xed
point of S and T: �



Chapter 4

M-convex and M�-convex Metric
Spaces

In this chapter we present a study of di¤erent types of convexities such as M -convex

and M�-convex in metric spaces and relationship between them. For these spaces

we include strict convexity. Furthermore, we consider its applications in �xed point

theory and Best approximation.

4.1 Relationship between various types of convex metric
spaces

Let (X; d) be a metric space. In this section we discuss di¤erent de�nitions of con-

vexities in (X; d) and their equivalence. These types are M -convex, M�-convex, M��-

convex and M���-convex (due to Khalil [Khal88] and Khamsi (communicated)).

De�nition: (X; d) is called M-convex if for any x; y 2 X, with x 6= y, there

exists z 2 X such that

d(x; y) = d(x; z) + d(y; z):

De�nition: (X; d) is called M�-convex if for any x; y 2 X, with x 6= y, and

t 2 [0; 1], there exists z = zt 2 X (di¤erent from x and y) such that

d(x; z) = td(x; y) and d(y; z) = (1� t)d(x; y). (I)

Lemma 4.1.1. [Kham12] (X; d) is M�-convex ) (X; d) is M -convex.

Proof. Indeed, by (I), we have

d(x; y) = td(x; y) + (1� t)d(x; y) = d(x; zt) + d(y; zt):]

Note. The converse is not true, i.e. (X; d) is M -convex ; (X; d) is M�-convex.

111
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Examples. Let X = Q, the set of rational numbers. Then Q is M -convex.

[Indeed, for x; y 2 Q, x 6= y, set z = x+y
2 2 Q, then we have

d(x; z) = jx� x+ y
2

j = 1

2
jx� yj = 1

2
d(x; y),

and d(y; z) = jy � x+ y
2

j = 1

2
jy � xj = 1

2
d(x; y);

i.e.,

d(x; z) =
1

2
d(x; y) and d(y; z) =

1

2
d(x; y):

In particular, we have d(x; y) = d(x; z) + d(z; y). So Q is M -convex.]

But Q is not M�-convex. [Indeed, set x = 0 and y = 1. Then, for any t 2 [0; 1]
which is irrational, and any z 2 Q,

d(x; z) = jx� zj = jzj 2 Q, while td(x; y) = tjx� yj = t =2 Q,

and so d(x; z) 6= td(x; y). Also

d(y; z) = jy � zj = j1� zj 2 Q, while (1� t)d(x; y) = (1� t)jx� yj = 1� t =2 Q,

and so d(y; z) 6= (1� t)d(x; y). Hence there does not exist z = zt 2 Q such that

d(x; zt) = td(x; y) and d(y; zt) = (1� t)d(x; y);

i.e. (X; d) is not M�-convex.] �
In fact, this example suggests the following de�nition which is very commonly used.

De�nition: (X; d) is called half-convex if for any x; y 2 X, with x 6= y, there

exists z 2 X such that

d(x; z) =
1

2
d(x; y) and d(y; z) =

1

2
d(x; y):

We will write z = x�y
2 .

Theorem 4.1.2. [Kham12] Let (X; d) be a half-convex metric space. Suppose X
is complete. Then (X; d) is M -convex. More precisely, for any x; y 2 X, the interval

[x; y] = ftx� (1� t)y : t 2 [0; 1]g

is contained in X. Further, the segment [x; y] is isometric to the real interval [0; d(x; y)]

and preserves the convexity properties of the points in [0; d(x; y)].

Proof. Let x; y 2 X with x 6= y. Let us introduce a new notation:

z(1; 2) =
x� y
2

means

d(x; z(1; 2)) =
1

2
d(x; y) (1)

and d(y; z(1; 2)) =
1

2
d(x; y) (2)
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If we keep going (having mid-points or bisecting), we get

z(1; 4) = Def x� z(1; 2)
2

;

z(2; 4) = Defz(1; 2)

and z(3; 4) = Def z(1; 2)� y
2

:

It is easy to check using the triangle inequality that

d(x; z(k; 4)) =
k

4
d(x; y);

d(y; z(k; 4)) = (1� k
4
)d(x; y),

and d(z(k; 4); z(s; 4)) = jk
4
� s

4
jd(x; y);

for any k; s 2 f1; 2; 3g.
[Explanation for k; s = 1; 2; 3:

z(1; 4) =
x� z(1; 2)

2
= means

d(x; z(1; 4)) =
1

2
d(x; z(1; 2)) =(1)

1

2
:[
1

2
d(x; y)] =

1

4
d(x; y) (3)

and d(z(1; 2); z(1; 4)) =
1

2
d(x; z(1; 2)) =

1

2
[
1

2
(d(x; y)] =

1

4
(d(x; y); (4)

or d(z(2; 4); z(1; 4)) = j2
4
� 1
4
jd(x; y)],

also d(z(1; 2); z(1; 4)) � d(z(1; 2); x) + d(x; z(1; 4)),

=
1

2
d(x; y) +

1

4
d(x; y), by (1) and (3)

=
3

4
(d(x; y) = (1� 1

4
)d(x; y), (5)

Next,

z(3; 4) =
z(1; 2)� y

2
means

d(y; z(3; 4)) =
1

2
d(y; z(1; 2)) =(2)

1

2
:[
1

2
d(x; y)] =

1

4
d(x; y), (6)

and d(z(1; 2); z(3; 4)) =
1

2
d(z(1; 2); y) =(2)

1

2
:[
1

2
d(x; y)] =

1

4
d(x; y); (7)

or d(z(2; 4); z(3; 4)) = j2
4
� 3
4
jd(x; y)],

also d(z(1; 2); z(3; 4)) � d(z(1; 2); y) + d(y; z(3; 4))

=
1

2
d(x; y) +

1

4
d(x; y), by (2) and (6)

=
3

4
d(x; y) = (1� 1

4
)d(x; y) (8) ]
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By induction, we will be able to construct a sequence of points fz(k; n)g 2 X with

k 2 f1; 2; :::; 2n � 1g, for any n � 1 such that the map T : K ! X, where K =

f k2nd(x; y) : k = 0; 1;..., 2
n, and n � 1g, de�ned by

T (0) = x; T (1) = y and T (
k

2n
d(x; y)) = z(k; n);

is an isometry, i.e. d(T (t); T (s)) = jt� sj, for any t; s 2 K. In other words, we almost
have a linear segment in X with end-points x and y. Assume moreover that X is

complete. Then by density of K in the real interval [0; d(x; y)], we get that there

exists an interval in X with end points x and y, i.e. for any t 2 [0; 1], there exists
z = t � (1 � t)y 2 X. Moreover the segment [x; y] is isometric to the real interval
[0; d(x; y)] and preserves the convexity properties of the points in [0; d(x; y)]. �

Remark. If X fails to be complete, then this result is not true as the example

X = Q shows.

De�nition: (X; d) is called M��-convex if for any x; y 2 X, with x 6= y, and

�; � 2 (0;+1), such that whenever d(x; y) � �+ �, we have

B[x; �] \B[y; �] 6= ;;

The last de�nition in this section is as follows.

De�nition: (X; d) is called M���-convex if for any x; y 2 X, with x 6= y, and

� 2 [0; d(x; y)], i.e. 0 � � � d(x; y), we have

B[x; �] \B[y; d(x; y)� �] 6= ;:

In the next result we discuss the equivalence between the above convexity proper-

ties.

Theorem 4.1.3. [Kham12] Let (X; d) be a metric space. Then the following

statements are equivalent:

(a) (X; d) is M�-convex.

(b) (X; d) is M��-convex.

(c) (X; d) is M���-convex.

Proof. (a) ) (b): Assume that (X; d) is M�-convex. Let x; y 2 X, with x 6= y,

and �; � 2 (0;+1), such that whenever d(x; y) � � + �. Set t = �
�+� 2 [0; 1]. Then

we have 1� t = �
�+� . Since (X; d) is M

�-convex, there exists z 2 X such that

d(x; z) = td(x; y) and d(y; z) = (1� t)d(x; y):

Since d(x; y) � �+ � , we get

d(x; z) = td(x; y) =
�

�+ �
d(x; y) � �;

d(y; z) = (1� t)d(x; y) = �

�+ �
d(x; y) � �:
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Hence z 2 B[x; �] \B[y; �], i.e., B[x; �] \B[y; �] 6= ;.
(b)) (c): Next assume (X; d) is M��-convex. It is easy to see that (X; d) is M���-

convex. [Indeed let x; y 2 X, with x 6= y, and � 2 [0; d(x; y], i.e. 0 � � � d(x; y). Set
� = d(x; y)� �. Then we have d(x; y) � � + �. Since (X; d) is M��-convex, we have

B[x; �] \B[y; �] 6= ;, i.e.

B[x; �] \B[y; d(x; y)� �] 6= ;:]

(c) ) (a): Finally assume (X; d) is M��-convex. To prove that (X; d) is M�-

convex. let x; y 2 X, with x 6= y, and � 2 [0; 1]. Since 0 � �d(x; y) � d(x; y), and

(X; d) is M���-convex, we get

B[x; �d(x; y)] \B[y; d(x; y)� �d(x; y)] 6= ;:

Let z 2 B[x; �d(x; y)] \B[y; d(x; y)� �d(x; y)]. Then we have

d(x; z) � �d(x; y) and d(y; z) � d(x; y)� �d(x; y) = (1� �)d(x; y). (II)

Following an earlier argument on page 1, using (II),

d(x; y) � d(x; z)) + d(y; z) � d(x; z) + (1� �)d(x; y),

or, �d(x; y) � d(x; z); hence d(x; z) = �d(x; y). Next, using (II) again,

d(x; y) � d(x; z) + d(y; z) � �d(x; y) + d(y; z),

or, (1� �)d(x; y) � d(y; z); hence d(y; z) = (1� �)d(x; y). Thus

d(x; z) = �d(x; y) and d(y; z) = (1� �)d(x; y).

i.e., (X; d) is M�-convex. �

4.2 Strictly M �-Convex Metric Spaces

In this section we study strictly M�-convex metric space and strictly M�-convex met-

ric space with M�-convex round balls, as given by Bula in [Bul99]. These objects

generalize well known concept of strictly convex Banach space.

Remarks. (1) We can de�ne convexity in the ordinary sense only in vector space.
(2) In the bibliography we �nd several possibilities as concept of convexity of vector

space transfer to space with metric or topology.

(3) What properties of convexity are essential? From works of other authors, solid

indications are two:
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(i) Intersection of a convex sets is convex set;

(ii) Closed balls are convex sets.

(4) If we can guarantee these properties in considered space, we say structure of
convexity is formed in space.

(5) The condition of convexity for de�nition set or range set of mapping very often

is used for existence of �xed point of mapping in the theory of �xed points.

(6) Several mathematicians have attempted transfer of structure of convexity (such

W -convexity, M -convexity, M�-convexity) as to space which is not vector space.

It is known from Section 2.1 that, for any convex closed subset C of a strictly

convex Banach space (X; jj:jj) and nonexpansive mapping T : C ! C, the set Fix(T )

is convex and closed. This property is also true for broader classes of mappings,

for example, for quasi-nonexpansive and asymptotically nonexpansive mappings (see

Section 2.1).

Recall that: A set K � (X; d) is said to be M�-convex if for each x; y 2 K and

for each t 2 [0; 1] there exists a z 2 K that satis�es:

d(x; z) = td(x; y) and d(z; y) = (1� t)d(x; y):

But by means of previous de�nition closed balls may be non-convex sets and in-

tersection of a convex sets may be non-convex set (see, for example, I. Galina [Ga92]).

Therefore we de�ne strictly M�-convex metric space in following manner:

De�nition: A metric space X is said to be strictly M�-convex if, for each
x; y 2 X and for each t 2 [0; 1], there exists a unique z 2 X that satis�es:

d(x; z) = td(x; y) and d(z; y) = (1� t)d(x; y): (1)

Note. Every strictly convex Banach space (X; jj:jj) is strictly M�-convex.

Proof. By a result of V.I. Istratescu (1981)Ist81], a Banach space (X; jj:jj) is
strictly convex i¤, for any x; y 2 X and t 2 [0; 1]; 9 a unique z 2 X such that

kx� zk = t kx� yk ; kz � yk = (1� t) kx� yk :

Thus (X; jj:jj) is strictly M�-convex. �
Remark. It is simple to prove that intersection ofM�-convex sets isM�-convex set

in strictly M�-convex metric space (I. Galina [Ga92]). But question of M�-convexity

of closed balls is still open.

Strictly M�-convex metric space with M�-convex round balls
Since we can not guarantee that closed balls in strictly M�-convex metric space

are M�-convex sets, we require this condition in addition. We de�ne:
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De�nition: A strictly M�-convex metric space X is said to be strictly M�-
convex space with M�-convex round balls if for any a; b; c 2 X (a 6= b), t 2 ]0; 1[,
there exists a z 2 X such that

d(a; z) = td(a; b) and d(z; b) = (1� t)d(a; b);

d(c; z) < maxfd(c; a); d(c; b)g: (2)

Lemma 4.2.1. ([Bul99], p. 8) Let X be a strictly M�-convex metric space with

M�-convex round balls. Then closed ball B[c; r] for every r > 0 and every c 2 X is a

M�-convex set.

Proof. We �x r > 0 and c 2 X. We choose freely two points a; b 2 B[c; r]; a 6= b;
and �x t 2]0; 1[:By de�nition of strictly M�-convex metric space, there exists a unique

z 2 X such that

d(a; z) = td(a; b) and d(z; b) = (1� t)d(a; b):

We must prove that z 2 B[c; r] or d(c; z) � r. By condition of M�-convex round balls

follows that

d(c; z) < maxfd(c; a); d(c; b)g � r: �

Remarks. (a) It can be proved that condition (2) above is equivalent with condi-
tion of M�-convexity of closed balls. We require more. With help of strict inequality

(2) we can prove Lemmas 4.2.2 and 4.2.3.

(b) Besides this strict inequality shows that if a and b belongs to sphere of ball

B[c; r] then z does not belong to this sphere, i.e., sphere does not contain straight lines

therefore in previous de�nition we speak of M�-convex round balls.

Counter-Examples. (i) We notice that well known metric space R with module
metric and R2 with Euclidean metric is both strictly M�-convex metric space and

strictly M�-convex metric space with M�-convex round balls. But R2 with maximum
metric is not strictly M�-convex metric space. [Indeed, if we take x = (0; 0); y =

(1; 0); t = 1
2 ; the uniqueness is not satis�ed because there exist two distinct points

z1 = (
1
2 ;
1
2); z1 = (

1
2 ; 0) satisfy (1)].

(ii) Trivial example for strictly M�-convex metric space that is not strictly M�-

convex metric space with M�-convex round balls is space with one point x and

d(x; x) = 0.

(iii) We notice that every convex subset of strictly convex Banach space is strictly

M�-convex metric space but no more strictly convex Banach space.

Strictly M�-convex metric spaces with M�-convex round balls inherent some good

properties that we formulate as lemmas.
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Lemma 4.2.2. ([Bul99], p. 9) Let X be a strictly M�-convex metric space with

M�-convex round balls and K be a M�-convex and compact subset of X and y 2 X.
Then

9 a unique y0 2 K : d(y; y0) = inffd(x; y) : x 2 Kg:

Proof. De�ne T : K ! R by the identity T (x) := d(x; y);8 x 2 K. Since K is a

compact set, T attains its in�mum on K and so 9 y0 2 K :

T (y0) = inffT (x) : x 2 Kg or d(y; y0) = inffd(x; y) : x 2 Kg:

The uniqueness we prove from contrary. We suppose that there exists another point

y00 2 K such that d(y; y00) = inffd(x; y) : x 2 Kg: The set K is M�-convex, therefore

for �xed t 2]0; 1[ exists such y000 2 K that

d(y0; y
00
0) = td(y0; y

0
0) and d(y

00
0 ; y

0
0) = (1� t)d(y0; y00)

From condition of M�-convex round balls follows that

d(y; y000) < maxfd(y; y0); d(y; y00)g = inffd(x; y) : x 2 Kg:

We have obtained that point y000 to be closer than points y0 and y
0
0. The contradiction

completes the proof. �
There is a certain course in �xed point theory formed by self-mappings of sets with

"normal structure", a concept introduced by M. Brodskij and D. Milman [BM48] in

1948 (Section 2.1).

De�nition: An M�-convex set K in a metric space (X; d) is said to have normal
structure if for each bounded and M�-convex subset H � K, that contains more

than one point, there is some point y 2 H such that

supfd(x; y) : x 2 Hg < �(H):

Lemma 4.2.3. ([Bul99], p. 9) Every M�-convex and bounded set in strictly M�-

convex metric space X with M�-convex round balls has normal structure.

Proof. Suppose K is M�-convex and bounded set in spaceX that does not have

normal structure. Then exists bounded and M�-convex subset H � K that contains

more than one point and

8x 2 H : supfd(x; y) : y 2 Hg = �(H):

We choose point x1 2 H. Then 9 x2 2 H such that d(x1; x2) = �(H). Since H is

M�-convex set then for �xed t 2]0; 1[ exists z 2 H such that

d(x1; z) = td(x1; x2) and d(z; x2) = (1� t)d(x1; x2):
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Since z 2 H then 9 x3 2 H that d(x3; z) = �(H): But then by condition ofM�-convex

round balls:

d(x3; z) = �(H) < maxfd(x1; x3); d(x2; x3)g � �(H):

The contradiction completes the proof. �

4.3 Fixed Points for Quasi-nonexpansive Maps in Strictly
M �-Convex Metric Spaces

In this section we present �xed point theorems for nonexpansive mapping and for

commutative families of nonexpansive or quasi-nonexpansive or asymptotically non-

expansive mappings in strictly M�-convex metric space with M�-convex round balls

as studied by Bula in [Bul99]. These results extend previous results of R. de Marr, F.

E. Browder, W. A. Kirk, K. Goebel, W. G. Dotson,T. C. Lim and some others.

Recall that: A metric spaceX is said to be strictlyM�-convex if for each x; y 2 X
and for each t 2 [0; 1] there exists unique z 2 X that satis�es:

d(x; z) = td(x; y) and d(z; y) = (1� t)d(x; y): (1)

In addition to classic case we can prove that set of �xed points for nonexpansive

self-mappings in M�-convex closed subset of strictly M�-convex metric space is M�-

convex and closed (I. Galina [Ga92]).

Lemma 4.3.1. ([Bul99], p. 10) Let X be a strictly M�-convex metric space

and K � X, an M�-convex and closed subset. If mapping T : K ! K is a quasi-

nonexpansive then the set of all �xed points of mapping T Fix(T ) is closed and

M�-convex.

Proof. Since T is quasi-nonexpansive then Fix(T ) 6= ? and T is continuous

mapping in all �xed points. We assume, that Fix(T ) is not closed set. Then ex-

ists x that belongs to boundary of Fix(T ) and that does not belong to Fix(T ):

Since K is closed set then x 2 K:Since x =2 Fix(T ) then T (x) 6= x:We de�ne

r := 1
3d(T (x); x) > 0:Then exists y 2 Fix(T ) that d(x; y) � r: Since T is quasi-

nonexpansive then d(T (x); y) � d(x; y) � r, and we have:

3r = d(T (x); x) � d(T (x); y) + d(y; x) � 2r:

This contradiction shows that assumption of Fix(T ) un-closedness is false.

Now we prove that Fix(T ) is M�-convex set. We choose freely two points x and

y (x 6= y) in set Fix(T ). Let t 2]0; 1[. We �nd the corresponding z 2 K : d(x; z) =
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td(x; y) and d(z; y) = (1 � t)d(x; y); which is unique by strictly M�-convexity of X.

We want to prove, that point z belongs to set Fix(T ).

Since T is quasi-nonexpansive then

d(T (z); x) < d(z; x) and d(T (z); y) � d(z; y):

Therefore

d(x; y) � d(x; T (z)) + d(T (z); y) � d(z; x) + d(z; y)

= td(x; y) + (1� t)d(x; y) = d(x; y):

It follows that

d(x; T (z) = d(z; x) = td(x; y);

d(T (z); y) = d(z; y) = (1� t)d(x; y):

By strictly M�-convexity of X implies that z = T (z) and z 2 Fix(T ), i.e., Fix(T ) is
M�-convex set. �

Lemma 4.3.2. ([Bul99], p. 10) Let K be M�-convex and closed subset of strictly

M�-convex metric space X. If mapping T : K ! K is an asymptotically nonexpansive

then the set of all �xed points of mapping T Fix(T ) is closed and M�-convex.

Proof. First. We prove that Fix(T ) is closed, it su¢ ces to show that Fix(T ) �
Fix(T ):Let z 2 Fix(T ); then there is a sequence fzng � Fix(T ) such that lim

n!1
zn = z:

Now, T , being asymptotically nonexpansive, is continuous. So

T (z) = T ( lim
n!1

zn) = lim
n!1

T (zn) = lim
n!1

zn = z ():

So z 2 Fix(T ). Hence Fix(T ) � Fix(T ) i.e., Fix(T ) is closed.
Second. We prove that Fix(T ) is M�-convex set. We choose freely two points x

and y (x 6= y) in Fix(T ), then

T i(x); T i(y) 2 Fix(T ); i = 1; 2; :::

Let t 2]0; 1[: We �nd the corresponding

z 2 K : d(x; z) = td(x; y); d(z; y) = (1� t)d(x; y): (since K is M�-convex) (1)

Sine X is strictly M�-convex then z is unique. We will have to prove that z 2 Fix(T )
or z = T (z):From de�nition of asymptotically nonexpansive mapping follows that:

d(T i(z); x) = d(T i(z); T i(x)) � kid(z; x) = tkid(x; y); i = 1; 2; ::: (2)

d(T i(z); y) = d(T i(z); T i(y)) � kid(z; y) = (1� t)kid(x; y); i = 1; 2; :: (3)
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Inequality of triangle and (1) and (3) implies:

d(x; y) � d(x; T i(z)) + d(T i(z); y)

� tkid(x; y) + (1� t)kid(x; y) = d(x; y); i = 1; 2; :::

Let i tend to in�nity. Then lim
i!1

ki = 1 and

d(x; lim
i!1

T i(z)) + d( lim
i!1

T i(z); y) = td(x; y) + (1� t)d(x; y):

From (2) and (3) follows that

d(x; lim
i!1

T i(z)) = td(x; y);

d( lim
i!1

T i(z); y) = (1� t)d(x; y):

z is a unique point with property (1) therefore lim
i!1

T i(z) = z: It follows that

z = lim
i!1

T i(z) = lim
i!1

T i+1(z) = T ( lim
i!1

T i(z)) = T (z);

i.e., z 2 Fix(T ) and Fix(T ) is M�-convex set. �
Inspired from �xed point theorems where condition of normal structure is used (for

example, R. de Marr [Marr63], W. A. Kirk [Kir65], W. Takahashi [Tak70] or M. R.

Taskovic [Tas97]), Bula [Bul99] proved that:

Theorem 4.3.3. ([Bul99], p. 11) Let X be strictly M�-convex metric space with

M�-convex round balls. Let K � X be M�-convex and compact set. If T : K ! K

is nonexpansive mapping, then T has a �xed point in K.

Proof. Let D = fB � K : B is nonempty, closed, M�-convex and T (B) �
Bg:Clearly D 6= ? (since K 2 D):Let B = fB� : � 2 Ig be a chain (totally ordered
subset) in D: A =

T
�2I

Ba is closed, M�-convex and T (B) � B: We need to show that

A is nonempty. By de�nition of D, B� \K 6= ? for each � (since B� � K). Take the
set fB�1 \K;B�2 \Kg � K:

\2i=1B�i \K 6= ? (since B�1 � B�2 or B�2 � B�1):

By compactness of K; T
�2I
(Ba \K) 6= ? or

� T
�2I

Ba

�T
K 6= ?:

So
T
�2I

Ba 6= ?:Then
T
�2I

Ba is a lower bound of B. Hence by Zorn�s Lemma D has a

minimal K0 � K:
We show that K0 consists of a single point. We assume that �(K0) > 0. Since K0

is M�-convex set then by Lemma 4.2.3 K0 has normal structure, i.e.,

9x 2 K0 : supfd(x; y) : y 2 K0g = r < �(K0):
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We denoteM�-convex closed hull of set T (K0) with coT (K0) = K1: Since T (K0) � K0
then

K1 = coT (K0) � K0 and

T (K1) � T (K0) � coT (K0) = K1:

The minimality of K0 implies K1 = K0:

We de�ne set

C := (\y2K0B[y; r]) \K0:

That is nonempty since x 2 C, that is M�-convex (by Lemma 4.2.1 in Section 4.2,

balls are M�-convex sets) and closed set as intersection of M�-convex and closed sets.

We de�ne set

C1 := (\y2T (K0)B[y; r]) \K0:

Since T (K0) � K0, then C � C1. [Indeed, let z 2 C;then z 2 K0 and

=) z 2 \y2K0B[y; r]

=) z 2 \y2K0B[y; r]

=) z 2 B[y; r]8y 2 K0
=) z 2 B[y; r]8y 2 T (K0) (since T (K0) � K0)

=) z 2 \y2T (K0)B[y; r]:

But z 2 K0. Therefore C � C1.]
Since T (K0) � B[z; r] and K0 = K1 = coT (K0) � B[z; r] then C1 � C: [Indeed,

let z 2 C1;then z 2 K0 and

=) z 2 \y2T (K0)B[y; r]

=) z 2 \y2T (K0)B[y; r]

=) z 2 B[y; r] 8 y 2 T (K0)

=) d(y; z) � r 8 y 2 T (K0):

Now K0 = K1 = coT (K0) � B[z; r] (because B[z; r] is closed and M�-convex set).

Thus K0 � B[z; r]:It follows that d(y; z) � r 8 y 2 K0;

=) z 2 B[y; r]8y 2 K0
=) z 2 \y2K0B[y; r]

But z 2 K0. Therefore C1 � C.] Hence C = C1:
We choose z 2 C and y 2 T (K0). Then exists x 2 K0 such that y = T (x).

Thereby:

d(T (z); y) = d(T (z); T (x)) � d(z;x) � r;
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i.e.,T (z) 2 C1. Since C = C1 then T (z) 2 C or T (C) � C. The minimality of K0
implies C = K0:But

�(C) � r � �(K0):

From obtained contradiction, we conclude that �(K0) = 0 and K0 = fx�g and
thereforeT (x�) = x�: �

We generalize Theorem 4.3.3 for commutative family of nonexpansive mappings.

De�nition: A family of mappings F is commutative if for all x 2 K, where K
is an arbitrary set, condition

f(g(x)) = g(f(x))

holds for all f ; g 2 F .
These result generalize �xed point theorems for commutative family of nonexpan-

sive mappings of R. de Marr [Marr63], F. E. Browder [Brow65] and T. C. Lim [Lim74].

Theorem 4.3.4. ([Bul99], p. 13) Let X be a strictly M�-convex metric space

with M�-convex round balls. Let K � X is M�-convex and compact set. If F = ff :
f : K ! Kg is commutative family of nonexpansive mappings then exists a common
�xed point for family F , i.e.,

9x� 2 K 8f 2 F : f(x�) = x�:

Proof. From Theorem 4.3.3, it is known that Fix(f) 6= ?, 8 f 2 F . Since

X is strictly M�-convex metric space, by Lemma 4.3.1, Fix(f) is M�-convex and

closed sets for every f 2 F (since Fix(f) 6= ?; every nonexpansive mapping is quasi-
nonexpansive).

Let us inductively prove that \ni=1Fix(fi) 6= ? for every n 2 N: For n = 1 the

statement is true from the Theorem 4.3.3 Assuming that \ki=1Fix(fi) 6= ?; let us
prove that \k+1i=1 Fix(fi) 6= ?:Since by assumption

fk+1(x) = fk+1(fi(x)) = fi(fk+1(x)); i = 1; 2; :::; k;

it follows that

fk+1(x) 2 \ki=1Fix(fi);

and hence fk+1 : \ki=1Fix(fi) ! \ki=1Fix(fi).

Let us prove that the mapping fk+1 has a �xed point in the set \ki=1Fix(fi):The
sets Fix(fi), i = 1; 2; :::k, are nonempty, closed andM�-convex, therefore \ki=1Fix(fi)
is closed and M�-convex as intersection of closed and M�-convex sets; that is compact

set as closed subset of compact set K. By Theorem 4.3.3 for nonexpansive mapping ,

there exists

fk+1 : \ki=1Fix(fi) ! \ki=1Fix(fi)
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has �xed point in set \ki=1Fix(fi); therefore

\k+1i=1 Fix(fi) 6= ?:

Since set K is compact, \f2FFix(f) is nonempty set also for in�nite family of map-
pings. �

Similar theorems we can to prove for commutative family of quasi-nonexpansive

and asymptotically nonexpansive mappings.

Theorem 4.3.5. ([Bul99], p. 13) Let X be a strictly M�-convex metric space

with M�-convex round balls. Let K � X is M�-convex and compact set. If F =

ff : f : K ! Kg is commutative family of quasi-nonexpansive mappings then exists a
common �xed point for family F .

Proof. Idea of proof is similar as in Theorem 4.3.4 The di¤erences are that for

n = 1 the statement is true by de�nition of quasi-nonexpansive mapping and the proof

that mapping fk+1 has a �xed point in the set \ki=1Fix(fi):
Let

fk+1 : \ki=1Fix(fi) ! \ki=1Fix(fi):

Let \ki=1Fix fi be M�-convex and compact set (this follows from Lemma 4.3.1).

We �x z 2 Fix(fk+1) 6= ?: By Lemma 4.2.2 in Section 4.2 there exists unique element

z0 2 \ki=1Fix(fi) such that d(z; z0) = inffd(z; y) : y 2 \ki=1Fix(fi)g:

Then from de�nition of quasi-nonexpansive mapping we get:

d(z; z0) = inffd(z; y) : y 2 \ki=1Fix(fi)g

� d(z; fk+1(z0)) = d(fk+1(z); fk+1(z0)) � d(z; z0):

From uniqueness of z0 follows that fk+1(z0) = z0, therefore

z0 2 \k+1i=1 Fix(fi) 6= ?: �

Theorem 4.3.6. ([Bul99], p. 14) Let X be a strictly M�-convex metric space

with M�-convex round balls. Let K � X is M�-convex and compact set. If F = ff :
f : K ! Kg is commutative family of asymptotically nonexpansive mappings and

8f 2 F : Fix(f ) 6= ?

then exists a common �xed point for family F .
Proof. Proof is similar to previous theorems. The di¤erences are following. The

set \ki=1Fixfi is M�-convex and closed by Lemma 4.3.2, since K is M�-convex and

compact set then \ki=1Fix(fi) isM�-convex and compact set. We prove that mapping

fk+1 : \ki=1Fix(fi)! \ki=1Fix(fi)
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has a �xed point in set \ki=1Fix(fi):We �x z 2 Fix(fk+1) 6= ?: By lemma 4.2.2 there
exists unique element z0 2 \ki=1Fix(fi) such that

d(z; z0) = inffd(z; y) : y 2 \ki=1Fix(fi)g:

Then

d(z; z0) = inffd(z; y) : y 2 \ki=1Fix(fi)g � d(z; f ik+1(z0))

= d(f ik+1(z); f
i
k+1(z0)) � kid(z; z0); i = 1; 2; :::

Let i!1:Then

lim
i!1

ki = 1 and d(z; z0) = d(z; lim
i!1

f ik+1(z0)):

From uniqueness of z0 follows that

z0 = lim
i!1

f ik+1(z0)

Since, by continuity of asymptotically nonexpansive mapping,

z0 = lim
i!1

f ik+1(z0) = lim
i!1

f i+1k+1(z0) = fk+1( limi!1
f ik+1(z0)) = fk+1(z0)

then

z0 2 \k+1i=1 Fix(fi) 6= ?: �

4.4 Best Approximation in StrictM-Convex metric spaces

In this section, we consider some results of Narang [Nar81]. The notion of strict

M -convexity in metric spaces was introduced in [ANT74] and certain existence and

uniqueness theorems on best approximation in such a space were proved in [ANT74]

and [ANT78]. This section deal with a stronger version of the notion of strict M -

convexity and characterize such metric spaces, as introduced in [Nar81]. Further, we

consider the unicity theorem of best approximation �Every M�convex proximinal set
in a strictly M -convex metric space is Chebyshev�.

De�nition: Let (X; d) be a metric space and x; y; z 2 X. We say that the point
z is between x and y (writing xzy) if

d(x; z) + d(z; y) = d(x; y):

Thereby, a metric space (X; d) is said to be M -convex [Rolf67] if for every two points
x and y 2 X, there exists z 2 X such that x 6= y 6= z and xzy:
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For any two points x; y of X, the set of all points which lie between x and y, is

called the segment [x; y]M :i.e,

[x; y]M = fz 2 X : d(x; z) + d(z; y) = d(x; y)g;

Theorem 4.4.1. ([Cha80], p. 43) Every normed vector space is an M -convex
metric space.

Proof. Let X = (X; k:k) be a normed vector space and let x; y 2 X;x 6= y: Since
X is linear space, 9 z = x+y

2 2 X: Now

d(x; z) + d(z; y) = kx� zk+ kz � yk

=





x� x+ y2




+ 



x+ y2 � y






=





2x� x� y2





+ 



x+ y � 2y2






=





x� y2




+ 



x� y2






=

1

2
kx� yk+ 1

2
kx� yk

= kx� yk = d(x; y):

Thus, X is an M -convex metric space.

We now give two examples to illustrate the fact that not every metric space is M -

convex and also the fact not every M -convex metric space is a normed vector space.

Example. Let K be a non-convex subset of R2equipped with the usual Euclidean
metric. Then it is easy to see that K is a metric space which is not M -convex.

Solution. Suppose

K = f(1; y) : 0 � y � 2g [ f(x; 2) : 1 � x � 3g [ f(3; y) : 0 � y � 2g:

Take x = (1; 0); y = (3; 0) 2 K: Only z = (2; 0) satis�es d(x; y) = d(x; z) + d(z; y):But
z =2 K: So K is not M -convex.

Example. The ball

B = B[0; 1] = fx 2 R2 : d(x; 0) � 1g = fx 2 R2 : jjxjj � 1g

in R2 with the usual Euclidean metric is an M -convex metric space which is not a
normed vector space.

Solution. To show that B is M -convex, let x = (x1; x2); y = (y1; y2) 2 B: Take
z = x+y

2 = (x1+y12 ; x2+y22 ). Then z 2 B, since

jjzjj = jjx+ y
2

jj � 1

2
(jjxjj+ jjyjj) � 1

2
(1 + 1) = 1.
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Further,

d(x; z) + d(z; y)

=

s�
x1 �

x1 + y1
2

�2
+

�
x2 �

x2 + y2
2

�2
+

s�
x1 + y1
2

� y1
�2
+

�
x2 + y2
2

� y2
�2

= 2

r
(x1 � y1)2

4
+
(x2 � y2)2

4

=
p
(x1 � y1)2 + (x2 � y2)2 = d(x; y):

But B is not a normed vector space since B is not a vector space. �
De�nition: [Rolf67] A metric space (X; d) is called strongly M-convex if for

any x; y 2 X, with x 6= y, there exists a unique z 2 X such that

d(x; y) = d(x; z) + d(y; z):

De�nition: A metric space (X; d) is said to be strictly M -convex if for every
x 6= y in X, and r > 0,

d(x; y) = d(x; z) + d(z; y) (i.e. strongly M -convex)

and d(p; x) � r; d(p; y) � r ) d(p; z) < r:

where p is arbitrary but �xed point of X and z is any point in the open segment ]x; y[

(i.e. z 6= x; z 6= y).
Therefore, in a strictly M -convex metric space if x and y are any two points on

the boundary of a sphere, then ]x; y[ lies strictly inside the sphere, i.e. d(z; x) < r;

d(z; y) < r.

Note. If X is a normed vector spaces, taking p = 0 2 X and z = x+y
2 in the above

de�nition, we obtain

jjxjj � r; jjyjj � r ) jjx+ y
2

jj < r:

Hence X becomes a strict convex normed space in the usual sense (Section 1.5).

De�nition: [ANT74] A subset K of a metric space (X; d) is said to beM -convex
if for every x; y 2 K, any point between x and y is also in K i.e. for each x; y in K,

the segment [x; y]M lies in K.

We have the following unicity theorem of best approximation.

Theorem 4.4.2. ([Nar81], p. 88; [ANT74], p. 95) In a strictly M -convex metric
space X, every proximinal convex set is Chebyshev.



4. M-convex and M�-convex Metric Spaces 128

Proof. Suppose that K is a convex proximinal subset of X. Let x 2 X. We
want to show K is Chebyshev (i.e., PK(x) is a singleton set). Since K is proximinal,

PK(x) 6= ?: Let z1; z2 2 PK(x); and d(x;K) = r: Then

d(z1; x) = d(x;K) = r; (1)

and

d(z2; x) = d(x;K) = r: (2)

Let z� is midpoint of z1 and z2: Since K is convex and z1; z2 2 K; z� 2 K: By strict
M -convexity of X,

d(z�; x) < r = d(x;K) unless z1 = z2: (3)

If z1 6= z2;(3) will be contradicted (1) and (2) (because, by de�nition of d(x;K),

d(x;K) � d(x; z) for all z 2 K). Therefore z1 = z2: Hence K is Chebyshev. �
Lemma 4.4.3. ([Nar81], p. 88) For any two points x; y in a strongly M -convex

metric space (X; d), the segment [x; y]M is convex.

Proof. Since X is strongly M -convex for each pair x and y there exist a unique

z between them (i.e. z 2 [x; y]M ). Let [x; y]M = K and z; y 2 K . To show that

[z; y]M 2 K; let z0 2 [z; y]M :Then

d(x; y) = d(x; z) + d(z; y) = d(x; z) + d(z; z0) + d(z0; y)

� d(x; z0) + d(z0; y) � d(x; y):

Hence

d(x; y) = d(x; z0) + d(z0; y):

So z0 2 [x; y]M .Therefore [z; y]M � K = [x; y]M . �
In order to show that the converse of the above theorem also holds, we establish a

lemma.

Lemma 4.4.4. ([Nar81], p. 88) For any two points x; y in a strongly M -convex
metric space (X; d), consider the function �x : [x; y]M ! [0; d(x; y)] � R de�ned by

�x(z) = d(x; z), z 2 [x; y]M .

Then �x is an isometry.

Proof. We can assume x 6= y: Let z 2 [x; y]M and z0 2 [z; y]M : Then

d(x; y) = d(x; z) + d(z; y) =

= d(x; z) + d(z; z0) + d(z0; y) � d(x; z0) + d(z0; y) � d(x; y):

Hence

d(x; y) = d(x; z0) + d(z0; y) (1)



4. M-convex and M�-convex Metric Spaces 129

and

�x(z
0) = d(x; z0) = d(x; z) + d(z; z0) = �x(z) + d(z; z

0)

implying ���x(z0)� �x(z)�� = d(z; z0): (2)

The equality (1) shows that z0 2 [x; y]M and the equality (2) shows that �x is an

isometry. �
Corollary 4.4.5. ([Nar81], p. 88) For any two points x; y in a strongly M -convex

metric space (X; d) the segment [x; y]M is a compact set.

Proof. The map �x : [x; y]M ! [0; d(x; y)] is an isometry and so its inverse

�x
�1 : [0; d(x; y)]! [x; y]M is continuous. Since [0; d(x; y)] is compact, [x; y]M is also

compact. �
Notation. Let S be a subset of a metric space (X; d). For any z 2 S, let

QS(z) = fx 2 X : d(x; z) = d(x; S)g;

i.e QS(z) is the set of all those points of X having z as a nearest point in S.

The following theorem shows that the converse of the unicity Theorem (Theorem

4.4.2) is also true. This result is also an analogue of ([Khal88, Theorem 2.6).

Theorem 4.4.6. ([Nar81], p. 89) Let (X; d) be a strongly M -convex metric space.
Then the following statements are equivalent:

(i) X is strictly M -convex.

(ii) For each convex set S and distinct points x and y of S; QS(x) \QS(y) = ?.
(iii) Every convex proximinal set S is Chebyshev.

Proof. (i)=)(ii) Let, if possible, QS(x) \ QS(y) 6= ? and let z 2 QS(x) \
QS(y):This implies,

d(z; x) = d(z; y) = d(z; S):

Now x; y 2 X and X is a strongly M -convex space, therefore there exists a unique

q 2 X such that xqy. Then q 2 [x; y]M ; and since S is a convex set, [x; y]M � S:

Therefore q 2 S.
Strict M -convexity of the space implies d(z; q) < d(z; S), which is a contradiction.

(ii)=)(iii) Let a convex set S be proximinal. Let p 2 X. Since S is proximinal,
PS(p) 6= ?. Then there exists x 2 S such that

d(x; p) = d(p; S);

i.e:p 2 QS(x).
Let if possible, y 6= x be also nearest to p, then

d(y; p) = d(p; S):
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Then p 2 QS(y). Thus p 2 QS(x) \QS(y), x 6= y, which is a contradiction.
(iii)=)(i) Let x 6= y, p be points of (X; d) with d(x; p) = d(y; p) = r (say). De�ne

f : I = [0; d(x; y)]! R by
f(t) = d(p; ��1x (t)):

Then f is continuous. Moreover, since [x; y]M is a compact convex subset, it is prox-

iminal. The hypothesis (iii) implies that there exists no subinterval [t1; t2] � I, t1 < t2,
such that

f(t1) = f(t2) = minff(t) : t1 � t � t2g:

We a¢ rm that all interior points t 2]0; d(x; y)[ satisfy

f(t) < max f = f(0) = f(d(x; y)): (3)

Let, if possible,f (t0) � max f for some interior point. Set

m0 = minff(t) : t � t0g;

m00 = minff(t) : t � t0g:

Suppose m0 � m00: De�ne

t00 = infft : t � t0;minff(t1) : t � t1 � t0g � m0g;

t000 = supft : t � t0;minff(t2) : t0 � t2 � tg � m
00g;

Since f is continuous it follows that

f(t00) = f(t
00
0) = minff(t) : t00 � t � t000g:

If t00 < t000 then [t
0
0; t

00
0] is the subinterval leading to a contradiction; if t

0
0 = t000 then

I = [0; d(x; y)] is the subinterval leading to a contradiction. Ifm0 � m00, a contradiction

can be reached by a similar argument.

Since �x is an isometry, (3) implies d(z; p) < r for any point z in the open segment

]x; y[. Hence the space is strictly M -convex. �



Chapter 5

Hyperconvex, CAT(0), R-trees
and Hyperbolic spaces

In this chapter we deal with Hyperconvex spaces and its various properties. Also

we include its applications in �xed point theory. Furthermore, we present CAT(0)

spaces and its applications in �xed point sets. Also, we shed light on R-trees and the
connection between them and CAT(0) spaces. Finally, we make a study of Hyeperbolic

spaces and �xed point results.

5.1 Hyperconvex Spaces and Nonexpansive Extensions

The notion of hyperconvex spaces has been introduced by N. Aronszahn and P. Pan-

itchpakdi [AroPan56] in 1956. In this section we study hyperconvex spaces and their

relationships to nonexpansive extension of mappings. Moreover, we present some prop-

erties of hyperconvexity. These include completeness. These results are due to Baillon

in [Bail88].

De�nition: A metric space M is called metrically convex (in short, M�-
convex) if for any two distinct points, x and y, and for any decomposition d(x; y) =
r + s, r > 0; s > 0 there exists a point z in M with d(x; z) = r and d(y; z) = s:

De�nition: A metric space (M;d) is said to be hyperconvex if

T
�2A

B[x�; r�] 6= ?

for any collection fB[x�; r�] : � 2 Ag of closed balls inM for which d(x�; x�) � r�+r� :
Remark. Hyperconvexity ) M�-convexity.

Proof. Suppose (M;d) is hyperconvex To show that (M;d) isM�-convex, consider

the decomposition d(x; y) = r+ s, r > 0; s > 0. Applying hyperconvexity to d(x; y) =

131
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r + s, choose a z 2 B[x; r] \B[y; s]. Then it follows that

d(x; z) � r; d(y; z) � s. (1)

On the other hand,

r + s = d(x; y) � d(x; z) + d(y; z). (2)

Hence, by (1) and (2),

d(x; z) � r + s� d(y; z) by (2)

� r + 0 = r by (1).

Similarly d(y; z) � s. Thus d(x; z) = r and d(y; z) = s. �
De�nition: A metric space is said to have the binary intersection property if

for any set of closed balls B[xi; ri], i 2 I, such that every two of these balls intersect,
then all the balls intersect.

We motivate the study of hyperconvex spaces with a simple observation about the

real line R.
Theorem 5.1.1. ([KK01], p. 71) Let fI�g�2A be a family of bounded closed

intervals of R each two of which intersect. ThenT
�2A

I� 6= ?:

Proof. Suppose the intersection is empty. Then by compactness there exist

fI1; :::; IN+1g � fI�g

such that

I =
NT
i=1
Ii 6= ? while

N+1T
i=1

Ii = ?:

Thus I and IN+1 are disjoint closed intervals in R. Select any point x that lies
strictly between them. (This is possible because the complement of I[IN+1is an open
set.) Then by the fact that any two members of the original family intersect,

x 2 Ii \ IN+1; i = 1; :::; N:

This implies

x 2
N+1T
i=1

Ii;

which is a contradiction. �
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Remarks. (1) ([EK01], p. 393) Note that an closed bounded interval I � R may
also be seen on the real line as a closed ball. [Indeed, the interval I = [a; b] is also the

closed ball centered at x = (a+ b)=2 with radius r = (b� a)=2, i.e.

[a; b] = B

�
a+ b

2
;
b� a
2

�
= B(x; r):

(2) If z 2 B[x�; r�] \B[x� ; r�], then

d(x�; x�) � d(x�; z) + d(z; x�) � r� + r�:

(3) In real line R; if x�; x� and r�; r� are centers and radii of any two closed
bounded intervals, respectively such that d(x�; x�) � r� + r� . Then the two intervals
must intersect, i. e. [x�� r�; x�+ r�]\ [x�� r� ; x�+ r�] 6= ?[(since R is M�-convex).

Note. By Theorem 5.1.1 and Remarks (1) & (3), the real line R is hyperconvex
space.

The next theorem con�rms that hyperconvexity is equivalent to the binary inter-

section property and the metric convexity property.

Theorem 5.1.2. ([KK01], p. 79) Let (M;d) be a complete metric space. Then
the following are equivalent:

(1) M is hyperconvex.

(2) M is M�-convex and has the binary ball intersection property.

Proof. (1)=)(2) This is already proved above in a Remark. It is obvious that
hyperconvex spaces have binary ball intersection property.

(2)=)(1) Next suppose M is a complete metric space which has the binary ball

intersection property, and suppose M is M�-convex. If fB[xi; ri]gi2I is a family of
closed balls in M for which

d(xi; xj) � ri + rj ;

then by Theorem 2.16 of ([KK01], p. 35), there is a metric segment joining xi and

xj and clearly some point of this segment must lie in B[xi; ri] \ B[xj ; rj ]: Therefore,T
i2I
B[xi; ri] 6= ? by the binary ball intersection property. �

Remarks. (1) Completeness is not actually necessary for the above, because
that hyperconvex spaces and any space having binary ball intersection property are

complete.(We will see that later on)

(2) In linear space, (2) reduces to the binary-intersection property on balls, because
metric convexity holds.
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For a subset A of a metric space (M;d), set:

rx(A) = supfd(x; y) : y 2 Ag for x 2M;

rM (A) = inffrx(A) : x 2Mg;

r(A) = inffrx(A) : x 2 Ag;

�(A) = supfrx(A) : x 2 Ag;

C(A) = fx 2 A : rx(A) = r(A)g;

cov(A) = \fB : B � A and B a closed ballg:

rM (A) is called the radius of A (relative to M), �(A) is the diameter of A and

C(A) is called the Chebyshev center of A:

Properties of Hyperconvex Spaces
Theorem 5.1.3. ([Bail88], p. 12; [KK01], p. 80) Any hyperconvex metric space is

complete.

Proof. Let fxng be a Cauchy sequence in hyperconvex metric space and �n =
supm�n d(xm; xn): Then for m � n

d(xn; xm) � �n � �n + �m:

Then B[xn; �n] \ B[xm; �m] 6= ?. By using the hyperconvexity property, 9 z 2
1\
n=1

B[xn; �n]. Clearly lim
n!1

�n = 0:[Indeed, since n!1; m!1: Then

lim
n!1

�n = lim
n!1

sup
m�n

d(xm; xn) � sup
m�n

lim
n!1

d(xm; xn) = 0 (since fxng is Cauchy).

Thus lim
n!1

xn = z [since z 2 B[xn; �n] for all n; d(xn; z) � �n for all n:Then limn!1
d(xn; z) =

0:] �
Remark. Any space with binary ball intersection property is complete.
Theorem 5.1.4. ([Bail88], p. 12; [KK01], p. 80) If A is a bounded subset of a

hyperconvex space M , then we have the following relations:

(1) cov(A) = \fB[x; rx(A)] : x 2Mg:
(2) rx(cov(A)) = rx(A); for any x 2M:
(3) rM (cov(A)) = rM (A):

(4) rM (A) = 1
2�(A)

(5) �(cov(A)) = �(A):

Proof. (1) Since B[x; rx(A)] contains A for each x 2M and cov(A) is the smallest

closed ball containing A it must be the case that

cov(A) � fB[x; rx(A)] : x 2Mg:
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On the other hand, if A � B[x; r], then d(x; y) � r 8 y 2 A so rx(A) � r:Thus

B[x; rx(A)] � B[x; r]:
Hence

\fB[z; rz(A)] : z 2Mg � B[x; r]:

Since B[x; r] is any closed ball containing A and cov(A) is a closed ball.This clearly

implies

cov(A) = \fB[x; rx(A)] : x 2Mg:

(2) By 1, rx(cov(A)) = supfd(x; y) : y 2 \z2MB[z; rz(A)]g. In particular, y 2
cov(A) implies y 2 B[x; rx(A)]; for any x 2M: Hence

d(x; y) � rx(A):

This proves rx(cov(A)) � rx(A): The reverse inequality is obvious Since A � cov(A).
(3) This is immediate from the de�nition of r. [Indeed,

rM (cov(A)) = inffrx(cov(A)) : x 2Mg

and rM (A) = inffrx(A) : x 2Mg.

By 2, rx(cov(A)) = rx(A):This proves rM (cov(A)) = rM (A):]

(4) Let � = �(A) and consider the family fB[a; �2 ] : a 2 Ag: If a; b 2 A;then

d(a; b) � � = �
2 +

�
2 so by hyperconvexityT

a2A
B[a;

�

2
] 6= ?:

If x is any point in this intersection then d(x; a) � �
2 so rx(A) �

�
2 :On the other hand

d(a; b) � d(a; z) + d(z; b)

for any a; b 2 A and z 2M: By taking sup on A of both sides, we get

� � rz(A) + rz(A)

so � � 2rz(A) from which � � 2rM (A). Therefore,

� � 2rM (A) � 2rx(A) � �;

proving rM (A) = 1
2�:

(5) Using (3) and (4), �(A) = 2rM (A) = 2rM (cov(A)) = �(cov(A)): �
De�nition: ([KK01], p.78) A metric space M is said to be injective if it has the

following extension property:
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Whenever Y is a subspace of a metric space X and f : Y ! M is nonexpansive,

then f has a nonexpansive extension ef : X !M .

The relations between hyperconvex spaces and nonexpansive mappings are given

by the following theorem:

Theorem 5.1.5. ([AroPan56], p. 416; [KK01], p. 81) A metric space (M;d) is

injective i¤ it is hyperconvex.

Proof. (=)) Assume (M;d) is injective. In order to prove thatM is hyperconvex,

we need only to show that M is M�-convex and has the binary intersection property.

Let x; y 2M with x 6= y. Let Y be the metric subspace of M consisting of the points

fx; yg and let (X; �) be the metric space consisting of the points fx; y; wg (w is an

arbitrary element) with distance

�(x; y) = d(x; y) and �(x;w) = �(y; w) =
1

2
d(x; y):

The identity mapping I : Y ! M is nonexpansive, so by injectivity of M it has a

nonexpansive extension eI : X !M . Therefore,

d(x; y) � d(x; eI(w)) + d(eI(w); y) � �(x;w) + �(y; w)
=

1

2
d(x; y) +

1

2
d(x; y) = d(x; y):

Now

d(x; eI(w)) = d(eI(x); eI(w)) � �(x;w) = 1

2
d(x; y);

and similarly d(y; eI(w)) � 1

2
d(x; y):

Also,

d(x; y) � d(x; eI(w)) + d(eI(w); y) � d(x; eI(w)) + 1
2
d(x; y);

or
1

2
d(x; y) � d(x; eI(w)):

Similarly,
1

2
d(x; y) � d(y; eI(w)):

Thus

d(x; eI(w)) = d(y; eI(w)) = 1

2
d(x; y):

and this proves that M is M�-convex.

Now we show thatM has the binary ball intersection property. Suppose fB[xi; ri]gi2I
is a family of closed balls of M each two of which have nonempty intersection. Let Y

be the subspace of M consisting of the points fxi : i 2 Ig and let Id : Y ! M be the
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identity mapping. As before, let X = Y [ fwg, where w is an arbitrary element (of
course, not in Y ), and de�ne the distance on X by extending d to

d(xj ; w) = inffr : B[xi; r] � B[xj ; r] for some i 2 Ig:

To see that this is a metric, one only need to check that for j; k 2 I;

d(xj ; xk) � d(xj ; w) + d(w; xk):

[Here we shall use the binary ball intersection property. Note that since B[xj ; rj ] �
B[xj ; rj ];

d(xj ; w) � rj for each j 2 I:

Also, either d(xj ; w) = rj or for some i 6= j, B[xi; ri] � B[xj ; d(xj ; w)]. In either case,
given j; k 2 I there exist i; n 2 I such that

B[xi; ri] � B[xj ; d(xj ; w)] and

B[xn; rn] � B[xk; d(xk; w)] (by de�nition of d(xj ; w)).

Since B[xi; ri] \B[xk; rk] 6= ?; it must be the case that

B[xj ; d(xj ; w)] \B[xk; d(xk; w)] 6= ?;

from which d(xj ; xk) � d(xj ; w) + d(w; xk).]
Finally, since M is injective, Id has a nonexpansive extension eId : X ! M . Then

we have eId(w) 2M and

d(xj ; eId(w)) = d(eId(xj); eId(w) � d(xj ; w) � rj for each j 2 I:
Therefore, eId(w) 2 T

i2I
B[xi; ri]:

(=)) Suppose (M;d) is hyperconvex, let Y be a metric space with T : Y ! M

nonexpansive, and suppose Y is a subspace of a metric space X: Consider the family

N de�ned as follows:

N = f(TF ; F ) : F is a subspace of X for whichY � F � X

and TF : F !M is nonexpansive withTF (Y ) = T (y)g:

The family N can be partially ordered by setting

(TF ; F ) � (TG; G) i¤ F � G and TG(z) = TF (z) for each z 2 F:
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Clearly N 6= ? (since (T; Y ) 2 N ). Let f(TF� ; F�)g�2A is a chain (totally ordered
subset) in N . Take G = [�2AF� and de�ne TG : G ! M by taking TG(x) = TF�(x)

for any � such that x 2 F�: Then clearly

(TF� ; F�) � (TG; G) for each � 2 A;

so each chain in N is bounded above. By Zorn�s Lemma N has a maximal element,

say (TH ;H ):

We assert H = X: If not, then there exist z 2 X such that z =2 H: Now let

H1 = H [ fzg: We wish to de�ne a nonexpansive extension of TH on H1 :We consider
the family of balls fB[TH(x); d(x; z)]gx2H . Note that for x1; x2 2 H,

d(TH(x1); TH(x2)) � d(x1; x2) � d(x1; z) + d(x2; z):

Since M is hyperconvex it follows thatT
x2H

B[TH(x); d(x; z)] 6= ?:

Select w 2
T
x2H

B[TH(x); d(x; z)] and de�ne TH1 : H1 !M by taking TH1(x) = TH(x)

if x 2 H and setting TH1(z) = w. Since

TH1(z) 2
T
x2H

B[TH(x); d(x; z)];

it follows that

d(TH1(x1); TH1(z)) � d(x; z) for each x 2 H:

Therefore, TH1 is nonexpansive. This implies (TH ;H) � (TH1 ;H1) with H1 6= H.

contradicting the maximality of (TH ;H). Thus H = X and T : Y ! M has a

nonexpansive extension. Hence (M;d) is injective. �
Corollary 5.1.6. ([Bail88], p. 14 ) If H is hyperconvex and is contained in a

metric space (M;d), then there is a nonexpansive retraction of M onto H.

Proof. The identity mapping i : H ! H is clearly nonexpansive:

d(i(x); i(y)) = d(x; y) for all x; y 2 H.

By above theorem, i can be extended to a nonexpansive mapping i� : M ! H such

that i�(x) = i(x) = x. So i� : M ! H is a nonexpansive retraction of M and it is

clearly onto. �
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5.2 Fixed Point Theorem for Nonexpansive Maps in Hy-
perconvex Spaces

The �xed point property (FPP) for nonexpansive mappings in hyperconvex spaces was

�rst proved by Sine [Sine79] and Soardi [Soa79]. In this section we make a study of a

�xed point theorem in hyperconvex spaces for such mappings. This theorem is due to

Khamsi and Kirk in [KK01].

De�nition: ([KK01], p. 36, 84) A bounded subset D of a metric space (M;d) is

called admissible if

D = cov(D)

=
T
fB �M : B is a closed ball and B � Dg:

Notation. The collection of all admissible subsets of a metric space M will be

denoted by A(M).
Note. A set is admissible i¤ it can be written as the intersection of a family

of closed balls in M . For this reason, the family A(M) is closed under arbitrary
intersections. The admissible subsets of a hyperconvex space are interesting for another

reason.

Theorem 5.2.1. ([KK01], p. 84) Suppose (M;d) is a hyperconvex metric space.
Then each set D 2 A(M) is itself hyperconvex.

Proof. Since D is admissible, we can write D =
T
i2I
B[xi; ri]; x 2 M . Now

let fB[x�; r�]g�2A be a family of closed balls centered at points x� 2 D for which

d(x�; x�) � r� + r�, �; � 2 A. By the hyperconvexity of M ,T
x2A

B[x�; r�] 6= ?:

It remains show that
T
x2A

B[x�; r�] � D: Now consider the family of closed balls

fB[x�; r�] : � 2 Ag [ fB[xi; ri] : i 2 I g:

Then for � 2 A and i; j 2 I;

d(x�; xi) � ri � r� + ri (since x� 2 D)

and d(xi; xj) � d(xi; x�) + d(x�; xj) � ri + rj ,

so it again follows from the hyperconvexity of M that� T
x2A

B[x�; r�]

�T�T
i2I
B[xi; ri]

�
=

� T
x2A

B[x�; r�]

�T
D 6= ?:

This proves that D is hyperconvex. �
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Theorem 5.2.2. ([Bail88], p. 14; [KK01], p. 84) If (M;d) is a bounded hypercon-
vex metric space and if T :M !M is nonexpansive, then the �xed point set Fix(T )

of T in M is nonempty and hyperconvex.

Proof. We �rst show that Fix(T ) 6= ?. This is another standard Zorn�s Lemma
approach. Let

F = fD 2 A(M) : D 6= ? and T : D ! Dg.

Then F 6= ? since M 2 F and F is partially ordered by reverse set-inclusion. (A �
B () A � B):

First note that if C is a chain in F , then \C 2 A(M):To see that C 2 F we need

only to show that \C 6= ?:To see that this is true apply the de�nition of hyperconvex-
ity. First index C, say C = fC�g�2A. Each set C� can be written as the intersection
of closed balls in M , say C� =

T
i�2I�

B[xi� ; ri� ]:Suppose C� � C�; and select z 2 C�.

Then for each i� 2 I�; i� 2 I� ;

d(xi� ; xi� ) � d(xi� ; z) + d(z; xi� ) � ri� + ri� :

Therefore by hyperconvexity of M ,

T
�2A

C� =
T
�2A

 T
i�2I�

B[xi� ; ri� ]

!
6= ?:

Since each chain in F is bounded above (by the intersection of the elements from

the chain), F has a maximal element, which, of course is a minimal element relative

to set inclusion. Call this minimal element D: Our strategy is to show that D consists

of a single point.

Since

T (D) �
T
x2M

B[x; rx(T (D))] = cov(T (D))

and since rx(T (D)) � rx(D), it must be the case that

cov(T (D)) �
T
x2M

B[x; rx(T (D)] �
T
x2M

B[x; rx(D] = cov(D) = D;

hence, T (cov(T (D))) � T (D) � cov(T (D)):

This proves that T : cov(T (D))! cov(T (D)).

Since cov(cov(T (D))) = cov(T (D)), then cov(T (D)) 2 F , and, since cov(T (D)) �
D with D minimal, it must be the case that D = cov(T (D)):Thus

D =
T
x2M

B[x; rx(T (D)],

and so rx(D) � rx(T (D)) for each x 2M:
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[Indeed if y 2 D; then y 2
T
x2M

[Bx; rx(T (D)] for each x 2 M so d(y; x) � rx(T (D);

hence rx(D) � rx(T (D)). Therefore,

rx(D) = rx(T (D)); x 2M .

Now let � = �(D) and let

C(D) =
T
x2D

B[x;
�

2
]:

We have already seen that C(D) 6= ? by hyperconvexity
�
x; y 2 D =) d(x; y) � � = �

2 +
�
2

�
:

What is important here is the fact that

D1 = C(D) \D 6= ?:

To see this we use the fact that D is admissible, say

D =
T
i2I
B[xi; ri]

and consider the family

M =fB[xi; ri] : i 2 Ig [ fB[x;
�

2
] : x 2 Dg:

We have already seen that d(xi; xj) � ri + rj for i; j 2 I and that d(x; y) � �
2 +

�
2 for

x; y 2 D. But also if i 2 I and x 2 D, then by taking z 2 D we see that

d(xi; x) � d(xi; z) + d(z; x) � ri +
�

2
:

So by hyperconvexity we conclude

D1 = \M 6=?:

Now let z 2 D1.

rT (z)(T (D)) = supfd(T (z); y) : y 2 T (D)g:

If y 2 T (D):Then 9 p 2 D such thatT (p) = y .Thus

rT (z)(T (D)) = sup
p2D

d(T (z); T (p))

rT (z)(T (D)) � sup
p2D

d(z; p) (since T is nonexpansive).

Hence rT (z)(T (D)) � rz(D):

However, we have already seen that

rT (z)(T (D)) = rT (z)(D);
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and since rz(D) = �
2 we obtain rT (z)(D) �

�
2 so T (z) 2 C(D) and since T (z) 2 D, we

have shown T (z) 2 D1, that is, T : D1 ! D1:Since D1 is admissible (D1 = cov(D1)),

this proves that D1 2 F and since D1 � D so by minimality of D we have D1 = D.

But �(D1) = �
2 and �(D) = �. This can only happen if � = 0:We conclude, therefore,

that D consists of a single point which of course must be a �xed point of T . We have

proved the �rst part of the theorem, namely,that Fix(T ) 6= ?:
We now show that Fix(T ) is hyperconvex. Let fB[xi; ri]gi2I be a family of closed

balls centered at points xi 2 Fix(T ) with the property d(xi; xj) � ri + rj .Since M is

hyperconvex the set

B =
T
i2I
Bi[xi; ri] 6= ?:

Since B is admissible, B is itself hyperconvex. Also, if z 2 B then for each i 2 I;

d(T (z); xi) = d(T (z); T (xi)) � d(z; xi) � ri:

This proves that T (z) 2 B[xi; ri], that is, T : B ! B so B 2 F and since B � D so

by minimality of D we have B = D. Therefore, we can conclude from what we have

shown above that T has a �xed point in B: Thus�T
i2I
Bi[xi; ri]

�T
Fix(T ) 6= ?:

Hence
T
i2I
Bi[xi; ri] � Fix(T ):This proves that Fix(T ) is hyperconvex. �

5.3 CAT(0) spaces and Fixed Points for Quasi-nonexpansive
Maps

The notion of CAT(0) space is due to M. Gromov (see, e.g., [BH99]). This section

contains the de�nition of CAT(0) spaces and its various properties, as given by Dhom-

pongsa and Panyanak in [DhPa08]. Further, we present the connection between �xed

point sets and closed convex subsets in CAT(0) space, as introduced by Chaoha and

Phon-on in [CP06].

A metric space X is a CAT(0) space if it is geodesically connected, and if every

geodesic triangle in X is at least as �thin�as its comparison triangle in the Euclidean

plane. The precise de�nition is given below. For a thorough discussion of these spaces

and of the fundamental role they play in various branches of mathematics, see Bridson

and Hae�iger [BH99] or Burago, et al. [BBI01]. We note in particular that the complex

Hilbert ball with a hyperbolic metric (see [GR84]; also inequality (4.2) of [RS90] and

subsequent comments) is a CAT(0) space.
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De�nition: ([DhPa08], p. 2572) Let (X; d) be a metric space. A geodesic path
joining x 2 X to y 2 X or, more brie�y, a geodesic from x to y is a map c from a

closed interval [0; `] � R to X such that c(0) = x; c(`) = y and

d(c(t1); c(t2)) = jt1 � t2j for all t1; t2 2 [0; `]:

In particular, c is an isometry and d(x; y) = `:The image � = c([0; `]) of c in X is

called a geodesic (or metric) segment joining x and y. When unique, this geodesic
is denoted by [x; y]c (or in short, [x; y]). Thus

[x; y]c = fc(�) : � 2 [0; `] and c(0) = x; c(`) = yg:

De�nition: ([DhPa08], p. 2573) The space (X; d) is said to be a geodesic metric
space if every two points of X are joined by a geodesic, and X is said to be uniquely
geodesic if there is exactly one geodesic joining x and y for each x; y 2 X.

De�nition: ([DhPa08], p. 2573) A subset Y of geodesic metric space (X; d) is

said to be g-convex if, for each pair x; y 2 Y , [x; y]c � Y .
De�nition: ([DhPa08], p. 2573) A geodesic triangle 4 (p; q; r) in a geodesic

metric space (X; d) consists of three points p; q; r in X (the vertices of 4) and a
geodesic segment between each pair of vertices (the edges of 4) .

De�nition: ([BH99], p. 158; [DhPa08], p. 2573) A comparison triangle
for geodesic triangle 4 (p; q; r) in (X; d) is a triangle 4(p; q; r) := 4(p; q; r) in the
Euclidean plane E2 such that

dE2(p; q) = d(p; q); dE2(q; r) = d(q; r) and dE2(p; r) = d(p; r):

A point x; belongs to a geodesic segment with endpoints p; q; is called a comparison
point for x; belongs to a geodesic segment with endpoints p; q; if

d(q; x) = dE2(q; x):

De�nition: ([DhPa08], p. 2573) A geodesic metric space is said to be a CAT(0)-
space if all geodesic triangles satisfy the following comparison axiom.

CAT(0) : Let 4 be a geodesic triangle in X, and let 4 be a comparison triangle

for 4 . Then 4 is said to satisfy the CAT(0) inequality if for all p; q 2 4 and all

comparison points p; q 2 4,
d(p; q) � dE2(p; q). (C-I)

If x; y; z are points in a CAT(0) space and if m is the midpoint of the segment

[x; y]c; then the CAT(0) inequality (C-I) implies

d(z;m)2 � 1

2
d(z; x)2 +

1

2
d(z; y)2 � 1

4
d(x; y)2. (CN)
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This is the (CN) inequality of Bruhat and Tits [BT72].

Remark. (cf. [BH99], p. 163) A geodesic space is a CAT (0) space i¤ it satis�es
the (CN) inequality.

As we see below, the parallelogram law in normed vector spaces is equivalent to

the (CN) "equality", hence it satis�es the (CN) inequality.

Remark. Every Hilbert space (X;<;>) satis�es the (CN) inequality.
Proof. Let x; y; z 2 X, and let m = x+y

2 , the mid point of x and y. Let p =
z�x
2 ,

q = z�y
2 . By the parallelogram law:

jjp+ qjj2 + jjp� qjj2 = 2jjpjj2 + 2jjqjj2

or, jjz � x
2

+
z � y
2
jj2 + jjz � x

2
� z � y

2
jj2 = 2jjz � x

2
jj2 + 2jjz � y

2
jj2

or jjz � x+ y
2

jj2 + jjy � x
2

jj2 =
2

4
jjz � xjj2 + 2

4
jjz � yjj2;

or jjz �mjj2 =
1

2
jjz � xjj2 + 1

2
jjz � yjj2 � 1

4
jjx� yjj2;

or d(z;m)2 =
1

2
d(z; x)2 +

1

2
d(z; y)2 � 1

4
d(x; y)2.

Thus (CN) inequality holds. �
We now collect some elementary facts about CAT(0) spaces.

Lemma 5.3.1. ([DhPa08], p. 2573) Let (X; d) be a CAT (0) space. Then
(i) (X; d) is uniquely geodesic ([BH99], p. 160).

(ii) ([Kir04], Lemma 3) Let p; x; y be points of X, let � 2 [0; 1], and let m1 and

m2 denote, respectively, the points of [p; x]c and [p; y]c satisfying

d(p;m1) = �d(p; x) and d(p;m2) = �d(p; y):

Then

d(m1;m2) � �d(x; y): (1)

(iii) Let x; y 2 X, x 6= y and z; w 2 [x; y]c such that d(x; z) = d(x;w): Then

z = w.

(iv) Let x; y 2 X. For each t 2 [0; 1], there exists a unique point z 2 [x; y]c such
that

d(x; z) = td(x; y) and d(y; z) = (1� t)d(x; y): (2)

Proof. (i) Let p; q 2 (X; d). Consider two distinct geodesic segments �; � with
same end points. Call these end points p and q: Let r1 2 � and r2 2 � such that

d(p; r1) = d(p; r2):

Let �0 and �00 be the two geodesic segments, with end points p; r1 and r1; q respectively,

inside �: Now let 4 be a comparison triangle in E2 for geodesic triangle with vertices
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p; r1; q and geodesic segments � ; �0 and �00: Suppose that comparison point for r1 2 �
is r1 such that

d(p; r1) = dE2(p; r1);

and the comparison point for r2 2 � is r2 such that

d(p; r2) = dE2(p; r2)

But E2 is a uniquely geodesic metric space [BH99]. Then r1; r2 2 [p; q]c and dE2(p; r1) =
dE2(p; r2) (since d(p; r1) = d(p; r2)). It is obvious that r1 = r2: [Indeed, since E2 is a
geodesic metric space, let c be the geodesic path joining p and q and let ` = dE2(p; q):

Since r1; r2 2 [p; q]c; there are t1; t2 2 [0; `] such that c(t1) = r1 and c(t2) = r2: Thus

dE2(p; r1) = dE2(c(0); c(t1)) = j0� t1j = t1;

and similarly dE2(p; r2) = t2: Since dE2(p; r1) = dE2(p; r2); we have t1 = t2: That is

r1 = r2]: The CAT(0) inequality implies that

d(r1; r2) � dE2(r1; r2):

Thus d(r1; r2) = 0; hence r1 = r2:

(ii) This is ([Kir04], Lemma 3).

(iii) Let c be the geodesic path joining x and y and let ` = d(x; y): Since z; w 2
[x; y]c, there are t1; t2 2 [0; `] such that c(t1) = z and c(t2) = w. Thus,

d(x; z) = d(c(0); c(t1)) = j0� t1j = t1;

d(x;w) = d(c(0); c(t2)) = j0� t2j = t2:

Since d(x; z) = d(x;w), we have t1 = t2. That is z = w:

(iv) If x = y, then the conclusion is obvious. Suppose that x 6= y. Take z = c(t`).
Thus z 2 [x; y]c and

d(x; z) = d(c(0); c(t`)) = j0� t:`j = t` = td(x; y);

d(y; z) = d(c(`); c(t`)) = j`� t.`j = (1� t)` = (1� t)d(x; y):

The uniqueness of z follows from (iii). �
For convenience, from now on we will use the notation tx� (1� t)y for the unique

point satisfying (2). By using this notation, the following is easy to verify.

Remark. Let (X; d) be a CAT(0) space and let x; y 2 X such that x 6= y and

s; t 2 [0; 1]. Then
tx� (1� t)y = sx� (1� s)y i¤ s = t:
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Lemma 5.3.2. ([DhPa08], p. 2573) Let (X; d) be a CAT (0) space and let x; y 2 X
such that x 6= y. Then

(i) [x; y]c = ftx� (1� t)y : t 2 [0; 1]g:
(ii) d(x; z) + d(z; y) = d(x; y) i¤ z 2 [x; y]c.
(iii) The mapping f : [0; 1]! [x; y]c, f(t) = tx�(1�t)y is continuous and bijective.
Proof. (i) The inclusion � follows from de�nition. [In fact, by de�nition, for any

t 2 [0; 1], tx� (1� t)y 2 [x; y]c.]
For the converse inclusion � , let z 2 [x; y]c and 1� t = d(x;z)

d(x;y) so

t = 1� d(x; z)
d(x; y)

=
d(y; z)

d(x; y)

Thus z = tx� (1� t)y:
(ii) (=)) [CP06] Let 4(x; y; z) be the comparison triangle in E2 of the geodesic

triangle 4(x; y; z), and w 2 [x; y]c be such that d(x;w) = d(x; z): By the above

assumption,

dE2(x; z) + dE2(y; z) = dE2(x; y)

it follows that [x; y]c is simply a straight line with the point z in between; i.e., z 2 [x; y]c.
Moreover, d(x; z) = dE2(x; z) and d(x;w) = dE2(x;w) (by de�nition of comparison

points). Since d(x;w) = d(x; z);

dE2(x;w) = d(x;w) = d(x; z) = dE2(x; z):

Hence dE2(x;w) = dE2(x; z): Since E2 is uniquely geodesic, by the same argument of
Lemma 5.3.1(iii), we get w = z. Then, by the CAT(0) inequality, we have

d(w; z) � dE2(w; z) = 0;

which implies z = w 2 [x; y]c:
((=) let z 2 [x; y]c. By (i), there exists t 2 [0; 1] such that z = tx � (1 � t)y,

consequently

d(x; z) + d(z; y) = td(x; y) + (1� t)d(x; y) = d(x; y):

(iii) Clearly f is well de�ned (by previous remark) and bijective (one-one (by

remark), onto (by i)). Let c be the geodesic path joining x and y and let ` = d(x; y).

Since c : [0; `] ! [x; y]c is continuous (because c is isometry) and the map b : [0; 1] !
[0; `], de�ned by b(t) = t` 8 t 2 [0; 1] is also continuous, it follows that g = c � b :
[0; 1] ! [x; y]c, de�ned by g(t) = (c � b)(t) = c(t`) is continuous. Now we want to

show that f = g. Put z = c(t`) for any t 2 [0; 1]: Thus z 2 [x; y]c: With the same
argument of Lemma 5.3.1(iv) and by de�nition of f we get z = f(t) so g(t) = f(t) for

any t 2 [0; 1]. Hence f = g. Therefore f is continuous.
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Lemma 5.3.3. ([DhPa08], p. 2574; [PhSu11], p. 5) Let X be a CAT (0) space.

Then

d(tx� (1� t)y; z) � td(x; z) + (1� t)d(y; z) (3)

for all x; y; z 2 X and t 2 [0; 1].
Proof. Let x; y; z 2 X and t 2 [0; 1]. Suppose that d(z; y) � d(z; x). Let u =

tx � (1 � t)y and let x0 be the point of [z; x]c such that d(z; x0) = d(z; y). Put v =

tx0�(1�t)y and w = tx0�(1�t)z. Since v = tx0�(1�t)y, then v 2 [x0; y]c = [y; x0]c
(since X is uniquely geodesic) and

d(y; v) = td(x0; y) and d(x0; v) = (1� t)d(x0; y):

Since w = tx0 � (1� t)z, w 2 [x0; z]c = [z; x0]c and

d(z; w) = td(x0; z) and d(x0; w) = (1� t)d(x0; z):

Also, since u = tx� (1� t)y; u 2 [x; y]c = [y; x]c and

d(y; u) = td(x; y) and d(x; u) = (1� t)d(x; y):

By Lemma 5.3.1(ii), we have

d(w; v) � (1� t)d(z; y) and d(u; v) � td(x; x0): (*)

Now

d(z; v) � d(z; w) + d(w; v)

� td(x0; z) + (1� t)d(z; y)

= d(z; y) (since d(z; x0) = d(z; y)):

Suppose that (3) does not hold. Then

td(z; x) + (1� t)d(z; y) < d(z; u) � d(z; v) + d(v; u)

� d(z; y) + d(v; u): (**)

Since x0 2 [z; x]c, by Lemma 5.3.2(ii),

d(z; x0) + d(x0; x) = d(z; x),

or d(z; y) + d(x0; x) = d(z; x) (since d(z; x0) = d(z; y)):

From (��) we get
d(u; v) > t[d(z; x)� d(z; y)] = td(x; x0):



5. Hyperconvex, CAT(0), R-trees and Hyperbolic spaces 148

This contradicts (�). Hence

d(u; z) � td(x; z) + (1� t)d(y; z): �

Corollary 5.3.4. ([PhSu11], p. 5) CAT (0) spaces are WCM spaces.

Proof. This is obvious from above lemma by taking W (x; y; t) := tx� (1� t)y for
all x; y 2 X and t 2 [0; 1].

Remark. In Lemma 5.3.1(iii), we can rewrite it as follow: let x; y 2 X. For each
t 2 [0; 1], there exists a unique point W (x; y; t) 2 [x; y]c:

Lemma 5.3.5. ([PhSu11], p. 5) CAT (0) spaces are uniformly WCM spaces.

Proof. As above, a CAT(0) space is aWCM space.

To prove "uniformily" part, let r > 0, " 2 (0; 2], and x; y; z 2 X be such that

d(x; z) � r, d(y; z) � r, d(x; y) � ":r. It is obvious thatW (x; y; 12) is the midpoint of
x and y. Applying (CN inequality) we get that

d(W (x; y;
1

2
); z) �

r
1

2
d(x; z)2 +

1

2
d(y; z)2 � 1

4
d(x; y)2

�
r
1

2
r2 +

1

2
r2 � 1

4
"2r2

=

r
1� "

2

4
:r � (1� "

2

8
)r:

where � = "2

8 : �
There are several ways to construct news examples of CAT(0) spaces from known

ones.

Lemma 5.3.6. ([CP06], p. 984) A g-convex subset of a CAT (0) space is itself a
CAT (0) space when endowed with the induced metric.

Proof. Let (X; d) be a CAT(0) space. Let Y be a g-convex subset of (X; d) with

induced metric. SinceY is g-convex, every geodesic segment joining any two of its

points must be in Y . Now let 4 be a geodesic triangle in Y and 4 be a comparison

triangle for 4: Let p; q 2 Y: Since (X; d) is a CAT(0) space and Y � X; then for all
p; q 2 4 and all p,q 2 4 we have

d(p; q) � dE2(p; q):

i.e. 4 satis�es the CAT(0) inequality. Thus Y is a CAT(0) space.

Fixed Points
Recall that a mapping T : X ! X is called a quasi-nonexpansive if it satis�es

d(T (x); u) � d(x; u) for all x 2 X and u 2 Fix(T ): (Q)
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Lemma 5.3.7.Let (X; d) be a metric space and T : X ! X a quasi-nonexpansive

map. Then Fix(T ) is closed.

Proof. See Section 2.1.
Theorem 5.3.8. ([CP06], p. 985) Let (X; d) be a g-convex subset of a CAT (0)

space and T : X ! X a quasi-nonexpansive map whose �xed point set is nonempty.

Then Fix(T ) is closed and g-convex.

Proof. By above Lemma, Fix(T ) is closed.
We now show that Fix(T ) is convex. Since (X; d) is convex in a CAT(0) space, it is

also a CAT(0) space. To show that Fix(T ) is g-convex, we need to show that, for any

x; y 2 Fix(T ), [x; y]c � Fix(T ). Let z 2 [x; y]c. Since T is quasi-nonexpansive, we

have d(x; T (z)) � d(x; z) and d(y; T (z)) � d(y; z). Hence, we obtain the inequalities

d(x; y) � d(x; T (z)) + d(T (z); y)

� d(x; z) + d(z; y)

= d(x; y) (since z 2 [x; y]c)

which implies d(x; T (z)) + d(T (z); y) = d(x; y): In fact, it is not di¢ cult to see that

d(x; z) = d(x; T (z)) and d(z; y) = d(T (z); y): [For if d(x; z) < d(x; T (z)) or d(y; z) <

d(y; T (z)); the above inequalities will give

d(x; y) � d(x; T (z)) + d(T (z); y) < d(x; z) + d(z; y) = d(x; y):

which is a contradiction.] Now, by Lemma 5.3.2(ii), we have T (z) 2 [x; y]c, and because
z; T (z) 2 [x; y]c satisfying d(x; z) = d(x; T (z)) hence by Lemma 5.3.1(iii) z = T (z):

Therefore, [x; y]c � Fix(T ); i.e., Fix(T ) is g-convex. �

5.4 R-trees Metric Spaces vs Hyperconvex and CAT(0)
Spaces

The notion of R-trees was introduced by J. Tits in [Tit77]. In this section, we give
connection between R-trees metric spaces with hyerconvex and CAT(0) spaces, as
given in [Kir98] and [BH99].

De�nition: A metric space (X; d) is called an R-tree if
(i) (X; d) is a geodesic space;

(ii) if [x; y]c \ [x; z]c = fxg, then [y; z]c = [x; y]c [ [x; z]c;
(iii) 8 x; y; z 2 X : 9w 2 X : [x; y]c \ [x; z]c = [x;w]c:
Examples. [Mart09] (1) The real line R is an R-tree.
(2) R2 with the Euclidian metric is not an R-tree because it contains metric (geo-

desic) triangles and thus violates Condition (ii) of the de�nition of R-tree.
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(3) The two sided comb metric on R2, which is given by

d((x1; y1); (x2; y2)) :=

(
jy1 � y2j if x1 = x2;
jy1j+ jx1 � x2j+ jy2j if x1 6= x2;

makes R2 into an R-tree.
Lemma 5.4.1. ([Mart09], p. 2) An R-tree is geodesically unique.
Proof. Consider two distinct geodesic segments �; � with the same endpoints. Ar-

gue by contradiction. Since the intersection �\ � is compact there exists subgeodesics
�0 and � 0 which intersect at and only at their endpoints. Call these endpoints x and

y.

Consider the geodesic �0 and [y; z]c inside � 0. These intersect in fyg. By (ii),
�0 [ [y; z]c = [x; z]c and thus d(x; z) = d(x; y) + d(y; z). This gives a contradiction if z
is chosen such that d(x; z) < d(x; y): Hence � = � : �

Lemma 5.4.2. ([Mart09], p. 3) If (X; d) is geodesically unique, then (X; d)

satis�es property (ii) of the de�nition of R-tree.
Proof. Let [x; y]c and [x; z]c be geodesics. Then the endpoints of the intersection

[x; y]c \ [x; z]c are x and some w 2 [x; y]c \ [x; z]c. Now geodesics are unique. �
Lemma 5.4.3. ([Mart09], p. 3) Let (X; d) be an R-tree. Let x; y; z 2 X and

suppose that

[x; y]c \ [x; z]c = [x;w]c:

Then:

(1) [y; w]c \ [w; z]c = fwg; [y; z]c = [y; w]c [ [w; z]c and [x; y]c \ [w; z]c = fwg;
(2) d(x;w) = 1

2(d(x; y) + d(x; z)� d(y; z));
(3) The point w depends only on x; y; z and not on their order.

Proof. (1) It is enough to show that [x; y]c \ [w; z]c = fwg. Therefore let

u 2 [x; y]c \ [w; z]c � [x; y]c \ [x; z]c = [x;w]c

(since [x;w]c � [x; z]c). Then d(u; x) � d(w; x). But we have also that u 2 [w; z]c.
Certainly d(u; z) � d(w; z) � d(x; z) and thus

d(x; u) = d(x; z)� d(u; z) (since u 2 [x; z]c)

� d(x; z)� d(z;w) (since d(u; z) � d(w; z))

= d(x;w) (since [z; w]c � [x; z]c and w 2 [x;w]c � [x; z]c)

Hence d(x; u) � d(x;w): and so d(u; x) = d(x;w) (since u 2 [w; x]c) which implies that
u = w.
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(2)

d(y; z) = d(y; w) + d(w; z)

= [d(y; x)� d(x;w)] + [d(z; x)� d(x;w)]

= �2d(x;w) + d(y; x) + d(x; z)

Thus d(x;w) = 1
2 [d(x; y) + d(x; z)� d(y; z)]:

(3) Consider [y; x]c \ [y; z]c = [y; v]c for some v 2 X. We want to show that v = w
and for this it is enough to show that d(y; v) = d(y; w). Then we get from part (2):

2d(y; v) = d(y; x) + d(y; z)� d(x; z)

= [d(y; w) + d(w; x)] + [d(y; w) + d(w; z)]� [d(x;w) + d(w; z)]

= 2d(y; w): �

Recall that: (i) A bounded subset D of a metric space (M;d) is called admissible
if

D = cov(D)

=
T
fB �M : B is a closed ball and B � Ag:

(ii) r(A) = inffrx(A) : x 2 Ag:
Recall that: A(M) is said to be normal if for each D 2 A(M) for which �(D) >

0;we have r(D) < �(D):

A(M) is said to be uniformly normal if there exists c < 1 such that for each

D 2 A(M) for which �(D) > 0, we have r(D) � c �(D):
Finally, A(M) is said to be compact [resp., countably compact] if every family

[resp. countable family] of nonempty sets in A(M) which has the �nite intersection
property has nonempty intersection. (The intersection of such a family is necessarily

also a member of A(M).)
Remark. Any uniformly normal is normal
Theorem 5.4.4. [Kham89] Let M be a complete metric space for which A(M)

is uniformly normal. Then A(M) is countably compact.
Theorem 5.4.5. [KuLi96] Let M be a metric space for which A(M) is countably

compact and normal. Then A(M) is compact.
Results. We begin with the following.
Theorem 5.4.6. ([Kir98], p.69) If (M;d) is an R-tree, then A(M) is uniformly

normal.

Proof. Let " 2 (0; 1): For D 2 A(M) with � := �(D) > 0, select u; v 2 D such

that d(u; v) > (1 � ")� , and let x 2 D be arbitrary. By (iii) of de�nition of R-tree,
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there exists w 2 [u; v]c such that [u; v]c \ [u; x]c = [u;w]c. In particular,

d(x; u) = d(x;w) + d(w; u) and d(x; v) = d(x;w) + d(w; v):

Suppose m is the midpoint of [u; v]c. If w 2 [u;m]c then

� � [d(x;w) + d(w;m)] + d(m; v) > d(x;m) + 1
2
(1� ")�

and it follows that

d(x;m) � 1

2
(1 + ")�

Similarly the same conclusion follows if w 2 [v;m]c:Thus

D � B[m; 1
2
(1 + ")�]:

Since any closed ball inM contains the segment joining any two of its points (this also

is a simple consequence of (iii) of de�nition of R-tree), and since D 2 A(M);and since
D 2 A(M), we have m 2 D. Therefore

r(D) � 1

2
(1 + ")� (since r(D) = inf

x2D
rx(D)).

Since " > 0 is arbitrary we conclude that A(M) is uniformly normal with constant
c = 1

2 : �
Theorem 5.4.7. ([Kir98], p.69) Let a metric space (M;d) be a complete R-tree.

Then M is hyperconvex.

Proof. We �rst show that if fB[xi; ri] : i = 1; :::; ng is an arbitrary �nite collection
of closed balls in an R-tree M , any two of which intersect, then

n\
i=1

B[xi; ri] 6= ?

We proceed by induction on n. The conclusion is trivial if n = 2: Suppose that for �xed

n � 2 each family of n balls, any two of which intersect, has nonempty intersection,
and suppose that any two balls of the family fB[xi; ri] : i = 1; :::; n + 1g intersect.
Then by the inductive hypothesis

S := \ni=1B[xi; ri] 6= ?:

Now suppose

B[xn+1; rn+1] \ S = ?

and let p 2 S: Then p =2 B[xn+1; rn+1] so we have d(xn+1; p) > rn+1:Let t be the

point of [xn+1; p]c for which d(xn+1; t) = rn+1:(thus t 2 B[xn+1; rn+1]), and let i 2
f1; :::; ng:There are two cases:
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(I) t =2 [xi; p]c. In this case

[xi; t]c \ [xn+1; t]c = ftg

(since t 2 [xn+1; p]c), so by (ii) of de�nition of R-tree,

[xi; t]c [ [xn+1; t]c = [xi; xn+1]c;

then we have t 2 [xn+1; xi]c and therefore t is the point of B[xn+1; rn+1] (from above)

nearest to xi; hence t 2 B[xi; ri] by the binary intersection property.
(II) t 2 [xi; p]c. In this case

d(xi; t) � d(xi; p) � ri

so again t 2 B[xi; ri]:
Therefore t 2 B[xi; ri] in either case. Since i is arbitrary so t 2 \n+1i=1 B[xi; ri];

completing the induction.

Now suppose M is a complete R-tree. Since M is M�-convex, to see that M is

hyperconvex it need only be shown that \�2AB[x�; r�] 6= ? whenever fB[x�; r�]g�2A
is any family of closed balls inM any two of which intersect. However, if any two balls

in such a family intersect then [by what we have seen above] the family fB[x�; r�]g�2A
has the �nite intersection property.

Also,fB[x�; r�]g�2A is a subfamily of A(M) (since B[x�; r�] is a closed ball); and
by Theorem 5.4.6, A(M) is uniformly normal so it is normal. Now, sinceM is complete

and uniformly normal A(M) is countably compact by Theorems 5.4.4. Since A(M) is
normal, it is compact by Theorem 5.4.5, so any subfamily of A(M) which has the �nite
intersection property must have nonempty intersection. Therefore \�2AB[x�; r�] 6= ?
proving.

Theorem 5.4.8. ([BH99], p. 167) R-trees are CAT(0) spaces.

5.5 Hyperbolic Spaces and T-Invariant Approximation
for Quasi-nonexpansive Maps

Di¤erent notions of �hyperbolic spaces�([Kir81-82], [GK83], [GK84], [RS90]) can be

found in the literature. We deal with the setting of hyperbolic spaces, as introduced by

Kohlenbach [Koh05] and Leustean in [Le07]. We present quasi-nonexpansive mappings

satisfy a certain condition, namely, condition (K), as given by Laowang and Panyanak

in [LaoPan13].

De�nition: ([Koh05], p. 98; [Le07], p. 387) A hyperbolic space is a triple
(X; d;W ) where (X; d) is a metric space and W : X �X � [0; 1]! X is such that for

all x; y; z; u 2 X and �; � 2 [0; 1], we have
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(W1) = (W ): d(z;W (x; y; �)) � �d(x; z) + (1� �)d(z; y);
(W2) = (I): d(W (x; y; �);W (x; y; �)) = j�� �j d(x; y);
(W3) = (C): W (x; y; �) =W (y; x; 1� �);
(W4) = (S): d(W (x; z; �);W (y; u; �)) � �d(x; y) + (1� �)d(z; u):
If x; y 2 X, and � 2 [0; 1], then we use the notation �x� (1� �)y for W (x; y; �).

It is easy to see that for any x; y 2 X, and � 2 [0; 1], we have

d(x; �x� (1� �)y) = (1� �)d(x; y);

d(y; �x� (1� �)y) = �d(x; y):

We shall denote by [x; y] the set f�x� (1� �)y : � 2 [0; 1]g:
De�nition: A nonempty subset C of a hyperbolic space X is said to be convex

if [x; y] � C for all x; y 2 C.
De�nition: [Le10] If C is a convex subset of a hyperbolic space X, then a function

f : C ! R is said to be convex if

f(�x� (1� �)y) � �f(x) + (1� �)f(y) for all x; y 2 C; � 2 [0; 1]:

Remark. We can use this de�nition for WCM space, i.e.

f(W (x; y; �) � �f(x) + (1� �)f(y) for all x; y 2 C; � 2 [0; 1]:

Corollary 5.5.1. ([Le07], p. 387) CAT (0) spaces are hyperbolic spaces.
Proof. (Out line) As proved in Section 5.3, a CAT(0) space (X; d) is a WCM

space so (W1) is satis�ed. Since CAT(0) space is uniformly WCM space (see section

5.3), (W2 �W3) is satis�ed (we already have proved that in Section 3.2 of Chapter
3). To prove that CAT(0) space satis�es (W4), it su¢ ces show that it satis�es this

property,

d(W (x; y; �);W (x; z; �)) � (1� �)d(y; z) (H1)

for all x; y; z 2 X and � 2 [0; 1]: [In fact, we already have proved that in Section

3.2 (Lemma 3.2.2) of Chapter 3, uniformly WCM spaces with property (H1) satisfy

(W4)]. Now, let x; y; z 2 X and � 2 [0; 1]. ThenW (x; y; �) = �x � (1 � �)y 2 [x; y]
and W (x; z; �) = �x� (1� �)z 2 [x; z]: Then,

d(x;W (x; y; �)) = d(x; �x� (1� �)y) = (1� �)d(x; y);

and

d(x;W (x; z; �)) = d(x; �x� (1� �)z) = (1� �)d(x; z):

Thus by Lemma 5.3.1(ii) in Section 5.3,

d(W (x; y; �);W (x; z; �)) � (1� �)d(y; z): �
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De�nition: The hyperbolic space (X; d;W ) is called uniformly convex if for
any r > 0, and " 2 (0; 2] there exists a � 2 (0; 1] such that for all x; y; z 2 X with

d(x; z) � r, d(y; z) � r , and d(x; y) � r ", it is the case that

d(
1

2
x� 1

2
y; z) � (1� �)r:

Note. We remark that any normed space (X; k�k) is a hyperbolic space, with
�x � (1 � �)y := �x + (1 � �)y. Obviously, uniformly convex Banach spaces are

uniformly convex hyperbolic spaces.

Theorem 5.5.2. ([Le07], p. 391) Assume that (X; d) is a CAT (0) space. Then
(X; d) is a uniformly convex hyperbolic space.

Proof. By using the same argument of Lemma 5.3.5 in Section 5.3.
From now on, X stands for uniformly convex hyperbolic space.

Proposition 5.5.3. ([KohLe07], Proposition 2.2) The intersection of any de-

creasing sequence of nonempty bounded closed convex subsets of a uniformly convex

hyperbolic space X is nonempty.

Proposition 5.5.4. [Le10] Let C be a nonempty closed convex subset of a uni-

formly convex hyperbolic space X, f : C ! [0;1) be convex and lower semicontinuous.
Assume moreover that for all sequences (xn) in C,

lim
n!1

d(xn; a) =1 for some a 2 X implies lim
n!1

f(xn) =1:

Then f attains its minimum on C. If, in addition,

f(
1

2
x� 1

2
y) � maxff(x); f(y)g

for all x 6= y, then f attains its minimum at exactly one point.

Proof. Let � be the in�mum of f on C and de�ne

Cn := fx 2 C : f(x) � �+
1

n
g

for all n 2 N:for all n 2 N. It is easy to see that Cn is closed (since f is lower

semicontinuous), convex (since f is convex), nonempty (since � � f(x), 8 x 2 C; take
" = 1

n then by de�nition of in�mum 9 a yn 2 C such that

� � f(yn) � �+
1

n
:

Hence yn 2 Cn) and the sequence (Cn)n2N is decreasing (let y 2 Cn+1; then f(y) �
�+ 1

n+1 � �+
1
n . Thus y 2 Cn) we can apply Theorem 5.5.3 to the sequence (Cn)n2N

to get the existence of x� 2 \n2NCn: It follows that f(x�) � � + 1
n for all n � 1;

hence f(x�) � �: Since � is the in�mum of f , we can conclude that f(x�) = �, that
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is f attains its minimum on C. The second part of the conclusion is immediate. If f

attains its minimum at two points x 6= y; then 1
2x
�� 1

2y
� 2 C; since C is convex, and

f(
1

2
x� � 1

2
y�) < maxff(x�); f(y�)g = �;

which is a contradiction. �
Theorem 5.5.5. [Le10] Every nonempty closed convex subset C of a uniformly

convex hyperbolic space X is a Chebyshev set.

Proof. Let x 2 X and de�ne f : C ! [0;1), f(y) = d(x; y): Then f is con-

tinuous, convex (by de�nition of convex function), and for any sequence (yn) in C,

lim
n!1

d(yn; a) =1 for some a 2 X implies lim
n!1

f(yn) =1; since

f(yn) = d(x; yn) � d(yn; a)� d(x; a):

Moreover, let y 6= z 2 C and denote

M := maxff(y); f(z)g > 0:

Then

d(x; y); d(x; z) �M and d(y; z) � ":M;

where " := d(y;z)
M and 0 < " � d(x;y)+d(x;z)

M � 2: Hence by uniform convexity � 2 (0; 1]
such that

d(
1

2
y � 1

2
z; x) � (1� �):M < M:

Thus, f satis�es all the hypotheses of Proposition 5.5.4, so we can apply it to conclude

that f has a unique minimum. Hence, C is a Chebyshev set. �
Note. The hyperbolicity is stronger than W -convexity. In fact, hyperbolic space

implies that WCM space.

Lemma 5.5.6. ([KaePa08], p. 7) Let X be a uniformly convex hyperbolic space,

and let x; y; z 2 X for which

d(x; z) + d(z; y) = d(x; y): (1)

Then z 2 [x; y].
Proof. Let u 2 x; y be such that d(x; u) = d(x; z) . Then

d(x; y) = d(x; u) + d(u; y) and also d(z; y) = d(u; y) by (1):

We will show that z = u. Suppose not, we let v = (1=2)z � (1=2)u and r = d(x; u) =
d(x; z) . Since d(z; u) > 0, choose " > 0 so that d(z; u) > r:". By the uniform convexity

of X, there exists � > 0 such that

d(x; v) � r(1� �) < r = d(x; z):
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By using the same arguments, we can show that d(y; v) < d(y; z). Therefore

d(x; y) � d(x; v) + d(y; v) < d(x; z) + d(y; z);

which is a contradiction. �
By using the above lemma with the proof of Theorem 5.3.8, we obtain the following

result.

Theorem 5.5.7. ([KaePa08], p. 8) Let C be a convex subset of a uniformly convex
hyperbolic space X and f : C ! C a quasi-nonexpansive mapping with Fix(f) 6= ?.
Then Fix(f) is closed and convex.

We now de�ne a condition (K) which is related to the T -invariant approximation

property. .

De�nition: A single-valued mapping T : C ! C is said to satisfy condition (K)
if Fix(T ) is nonempty closed and convex, and for each x 2 Fix(T ) and any closed
convex subset A with T (A) � A, PA(x) 2 Fix(T ), hence PA(x) \ Fix(T ) 6= ?.

Theorem 5.5.8. ([LaoPan13], p. 3) Let C be a nonempty convex subset of X. If

T : C ! C is a quasi-nonexpansive mapping, then T satis�es condition (K).

Proof. Fix(T ) is closed and convex (by Theorem 5.5.7). Let x 2 Fix(T ) and A be
a closed convex subset of C with T (A) � A. Let y 2 A be such that d(x; y) = d(x;A).
Since T is quasi-nonexpansive,

d(x; T (y)) � d(x; y):

Thus, since T (y) 2 A,

d(x; y) = d(x;A) � d(x; T (y)) � d(x; y);

or d(x; T (y)) = d(x; y) = d(x;A):

By the uniqueness of y (by Theorem 5.5.5), we have T (y) = y. Therefore T satis�es

condition (K). �
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