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Abstract

Motivation: Coexisting in a DNA system, meiosis and recombination are two indispensible aspects

for cell reproduction and growth. With the avalanche of genome sequences emerging in the post-

genomic age, it is an urgent challenge to acquire the information of DNA recombination spots be-

cause it can timely provide very useful insights into the mechanism of meiotic recombination and

the process of genome evolution.

Results: To address such a challenge, we have developed a predictor, called iRSpot-EL, by fusing

different modes of pseudo K-tuple nucleotide composition and mode of dinucleotide-based auto-

cross covariance into an ensemble classifier of clustering approach. Five-fold cross tests on a

widely used benchmark dataset have indicated that the new predictor remarkably outperforms its

existing counterparts. Particularly, far beyond their reach, the new predictor can be easily used to

conduct the genome-wide analysis and the results obtained are quite consistent with the experi-

mental map.

Availability and Implementation: For the convenience of most experimental scientists, a user-

friendly web-server for iRSpot-EL has been established at http://bioinformatics.hitsz.edu.cn/iRSpot-

EL/, by which users can easily obtain their desired results without the need to go through the com-

plicated mathematical equations involved.

Contact: bliu@gordonlifescience.org or bliu@insun.hit.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recombination plays an important role in genetic evolution,

which describes the exchange of genetic information during the

period of each generation in diploid organisms. Recombination pro-

vides many new combinations of genetic variations and is an import-

ant source for biodiversity, which can accelerate the procedure of

biological evolution. Knowledge of recombination spots may also

provide very useful information for in-depth understanding the re-

production and growth of cells. Therefore, it is highly demanded to

develop computational methods for predicting the recombination

spots.

Actually, many efforts have been made in this regard. For in-

stance, based on the gapped dinucleotide composition features,

Jiang et al. (2007) developed a predictor called RF-DYMHC to do

the job. Liu et al. (2012), using the kmer approach and the incre-

ment of diversity combined with quadratic discriminant analysis, de-

veloped the IDQD predictor for the same purpose. In the above two

predictors, however, only the local DNA sequence information was

utilized, and hence their prediction quality may be limited. To im-

prove this situation, recently two new predictors, iRSpot-PseDNC

(Chen et al., 2013) and iRSpot-TNCPseAAC (Qiu et al., 2014) were

developed. The former was based on the DNA local structural
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properties (Chen et al., 2012) and pseudo dinucleotide composition

(Chen et al., 2014); while the latter based on the DNA trinucleotide

composition (Chen et al., 2014) as well as the corresponding pseudo

amino acid components (Chou, 2001).

Each of the aforementioned methods has its own advantage, and

did play a role in stimulating the development of this important

area. Meanwhile, they also have some disadvantages, as reflected by

the following facts. (i) Although powerful predictors have been pro-

posed, there is no efficient approach to combine them to further im-

prove the predictive performance. (ii) None of these methods allows

users to set the desired parameters for prediction, and hence it is dif-

ficult for them to optimize the predictor system according to the

need of their focus. (iii) Except the RF-DYMHC (Jiang et al., 2007),

all the other predictors cannot be directly used for genome-wide

analysis. Even for the RF-DYMHC predictor, its approach is not ac-

curate because the window size therein is arbitrary.

This study was initiated in an attempt to address these shortcom-

ings by developing a more powerful predictor for identifying DNA

recombination spots. The proposed predictor is called iRSpot-EL,

where ‘i’ stands for ‘identify’, ‘RSpot’ for ‘recombination spot’ and

‘EL’ for ‘ensemble learning’.

To develop a new predictor usually consists of two purposes.

One is to stimulate theoretical studies in the relevant areas, and the

other is to make experimental scientists easier to get their desired in-

formation. To realize these, the rest of this article is presented ac-

cording to the following five guidelines (Chou, 2011): (i) benchmark

dataset, (ii) sample representation, (iii) operation algorithm, (iv) val-

idation, and (v) web-server.

2 Materials and methods

2.1 Benchmark dataset
A reliable and stringent benchmark is pivotal to the development of

an accurate prediction method. In literature, the benchmark dataset

usually consists of a training dataset and a testing dataset: the for-

mer is for the purpose of training a proposed model, while the latter

for the purpose of testing it. As pointed out by a comprehensive re-

view (Chou and Shen, 2007b), however, there is no need to separate

a benchmark dataset into a training dataset and a testing dataset for

validating a prediction method if it is tested by the jackknife or sub-

sampling (K-fold) cross-validation because the outcome thus ob-

tained is actually from a combination of many different independent

dataset tests. In this study, for facilitating the comparison of the pro-

posed predictor with the existing ones, we adopted the widely used

benchmark dataset (Chen et al., 2013; Jiang et al., 2007; Liu et al.,

2012; Qiu et al., 2014) that can be formulated as

S ¼ S
þ [ S� (1)

where S is the benchmark dataset, Sþ the positive subset containing

490 DNA segments (hotspot samples) with the relative hybridiza-

tion ratios (Gerton et al., 2000) higher than 1.5 (Jiang et al., 2007),

S
� the negative subset containing 591 DNA segments (coldspot sam-

ples) with the relative hybridization ratios (Gerton et al., 2000)

lower than 0.82 (Jiang et al., 2007), and the symbol [ denotes the

union in the set theory. In order to reduce redundancy and hom-

ology bias, the CD-HIT software (Li et al., 2001) was used to re-

move sequences whose similarity is >75%. Finally, 478 hotspots

(positive samples) and 572 coldspots (negative samples) were ob-

tained. For readers’ convenience, the 478 hotspot samples and 572

coldspot samples as well as their detailed sequences are given in

Supplementary Materials S1.

2.2 Pseudo k-tuple nucleotide composition
With the avalanche of biological sequences emerging in the post-

genomic age, one of the most challenging problems in computa-

tional biology is how to formulate a biological sequence with a vec-

tor, yet essentially still keep its key pattern or characteristics. This is

because nearly all the existing machine-learning algorithms were de-

veloped to handle vector but not sequence samples, as elaborated in

a recent review (Chou, 2015). Unfortunately, a vector defined in a

discrete model may completely lose all the sequence-order informa-

tion or sequence pattern characteristics. To overcome such a prob-

lem for protein/peptide sequences, the pseudo amino acid

composition (PseAAC) (Chou, 2001) was introduced, and has be-

come an important tool (Cao et al., 2013; Du et al., 2012, 2014)

widely used in nearly all the areas of computational proteomics [see

a long list of references cited in Chou (2011)]. Encouraged by the

successes of PseAAC, the pseudo nucleotide composition (PseKNC)

(Chen et al., 2014, 2015b; Liu et al., 2015a, 2016b) was introduced

to formulate DNA/RNA sequences, and it has been increasingly

used in computational genetics and genomics (see, e.g. a recent re-

view (Chen et al., 2015a) as well as a long list of references cited

therein). Recently, a web-server called ‘Pse-in-One’ was developed

for generating various modes of pseudo components for DNA/RNA

and protein/peptide sequences (Liu et al., 2015b).

Here the concept of PseKNC was used to define the feature vec-

tors for identifying recombination spots via 15 indices (Table 1) of

local DNA structural properties, which were selected from (Friedel

et al., 2009). Note that PseKNC model contains three uncertain par-

ameters: k is the number of neighboring nucleic acid residues; k is

the highest ranks or tiers (Chou, 2005); w is the weight factor.

These three parameters will be discussed in the Ensemble Learning

Section.

2.3 Dinucleotide-based auto-cross covariance
In this study, the DNA sequences were generated by a very special

mode of PseKNC (Liu et al., 2015b), the so-called dinucleotide-

based auto-cross covariance (DACC) approach, which is a combin-

ation of dinucleotide-based auto covariance (DAC) and

dinucleotide-based cross covariance (DCC). The former is based on

a same physicochemical property listed in Table 1; while the latter,

based on two different ones. Note that there is one shift parameter

lag in the DACC, as will be discussed later.

2.4 Support vector machine
Support vector machine (SVM) (Suykens and Vandewalle, 1999) is

an efficient supervised learning approach in the field of machine

learning, and has been widely used for classification and regress ana-

lysis. The basic idea of SVM is to transform the input data into a

high dimensional feature space and then determine the optimal sepa-

rating hyperplane. For more details about SVM, see Cristianini and

Shawe-Taylor (2000) and Vapnik (1999).

In this study, the LIBSVM package (Chang and Lin, 2001) with

RBF kernel was used to implement SVM, in which there are two

parameters: one is the regularization parameter C, and the other is

the kernel width parameter c. Thus, there are a total of five uncer-

tain parameters when using SVM on the PseKNC model, while three

uncertain parameters on the DACC model. All these parameters

were optimized on the validation sets

2.5 Ensemble learning
As demonstrated by a series of previous studies, such as protein fold

pattern recognition (Shen and Chou, 2006), membrane protein type
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classification (Chou and Shen, 2007a), signal peptide prediction

(Shen and Chou, 2007a), protein subcellular location prediction

(Chou and Shen, 2008), enzyme functional classification (Shen and

Chou, 2007b), identifying phosphorylation sites (Qiu et al., 2016b)

and multiple lysine PTM sites in proteins (Qiu et al., 2016a), the en-

semble predictor formed by fusing an array of individual predictors

via a voting system can yield much better prediction quality.

There are two main components in the ensemble learning frame-

work: (i) How to select the basic classifiers? (ii) How to ensemble

the basic classifiers so as to make the final prediction? In order to se-

lect the representative basic classifiers, the distance between any two

classifiers CðiÞ and CðjÞ was measured by the following equation

considering both the diversity and complementarity of the

classifiers:

Distance CðiÞ; CðjÞð Þ ¼ 1� 1

2m

Xm
k¼1

ðdikDdjkÞ (2)

where m represents the number of training samples, dik represents

the misclassification probability of classifier C ið Þ on the kth sample,

and dikDdjk can be calculated by:

dikDdjk¼
dikþdjk; if C ið Þ and C jð Þ incorrectly predicts the kth sample

0; otherwise

(

(3)

The range of the distance defined in Equation (2) is from 0 to 1,

where a distance of 1 indicates the predictive results of two classi-

fiers are completely complementary, and 0 means that their results

are identical. Based on the distance, the affinity propagation cluster-

ing algorithm (Frey and Dueck, 2007) was employed, which is quite

suitable for the current task since the center clusters are not required

in this algorithm.

For the PseKNC (Chen et al., 2014), different values of k, k and

w will correspond to different input types. In the present study, 500

different PseKNC classifiers were constructed by using the following

parameter combinations:

2 � k � 6 with step D ¼ 1

0 � w � 1 with step D ¼ 0:1

1 � k � 10 with step D ¼ 1

8>><
>>: (4)

Likewise, 10 different DACC classifiers were generated with dif-

ferent values of lag (lag¼1, 2, . . ., 10). By using the aforementioned

methods, 510 different classifiers were obtained, which were then

clustered into seven clusters by using the affinity propagation clus-

tering (Frey and Dueck, 2007). For each cluster, the top performing

one was selected. For this study, the ensemble classifier can be for-

mulated by (see Table 2)

C
E ¼ C 1ð Þ8C 2ð ÞC 3ð Þ8C 4ð Þ8C 5ð Þ8C 6ð Þ8C 7ð Þ ¼ 87

i¼1CðiÞ (5)

where C
E denotes the ensemble classifier, the symbol 8 denotes the

fusing operator (Chou and Shen, 2007b), and the fusion was oper-

ated via the following fractional votes

Y ¼ 1

7

X7

i¼1

FiPi (6)

where Pi denotes the probability from the classifier CðiÞ, and Fi

its fraction used, which was optimized on the validation sets (see

Table 2). If Y > 0.5, the sample is predicted as a hotspot; otherwise,

coldspot.

For more detailed about the process of fusing individual basic

classifiers into an ensemble classifier, see a comprehensive review

(Chou and Shen, 2007b) where a crystal clear elucidation with a set

of elegant equations are given and hence there is no need to repeat

here.

The flowchart of ensemble strategy on different clustering is

given in Figure 1.

2.6 Cross-validation
Three cross-validation methods are often used in literature; they are

independent dataset test, K-fold cross-validation test, and jackknife

test (Chou and Zhang, 1995).

In this study, the 5-fold cross-validation was used. The bench-

mark dataset was randomly divided into five subsets with an ap-

proximately equal number of samples. Each predictor runs five

times with five different training and test sets. For each run, three

sets were used to train the

predictor, one set was used as the validation set to optimize the

parameters, and the remaining one was used as the test set to give

the final results.

2.7 Metrics used to reflect the success rates
For a binary classification system such as the one in this study, the

following set of four metrics are often used to quantitatively

Table 1. The values of the fifteen DNA dinucleotide properties

Structural index AA/TT AC/GT AG/CT AT CA/TG CC/GG CG GA/TC GC TA

F-roll 0.04 0.06 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.03

F-tilt 0.08 0.07 0.06 0.10 0.06 0.06 0.06 0.07 0.07 0.07

F-twist 0.07 0.06 0.05 0.07 0.05 0.06 0.05 0.06 0.06 0.05

F-slide 6.69 6.80 3.47 9.61 2.00 2.99 2.71 4.27 4.21 1.85

F-shift 6.24 2.91 2.80 4.66 2.88 2.67 3.02 3.58 2.66 4.11

F-rise 21.34 21.98 17.48 24.79 14.51 14.25 14.66 18.41 17.31 14.24

Roll 1.05 2.01 3.60 0.61 5.60 4.68 6.02 2.44 1.70 3.50

Tilt �1.26 0.33 �1.66 0.00 0.14 �0.77 0.00 1.44 0.00 0.00

twist 35.02 31.53 32.29 30.72 35.43 33.54 33.67 35.67 34.07 36.94

Slide �0.18 �0.59 �0.22 �0.68 0.48 �0.17 0.44 �0.05 �0.19 0.04

Shift 0.01 �0.02 �0.02 0.00 0.01 0.03 0.00 �0.01 0.00 0.00

Rise 3.25 3.24 3.32 3.21 3.37 3.36 3.29 3.30 3.27 3.39

Energy �1.00 �1.44 �1.28 �0.88 �1.45 �1.84 �2.17 �1.30 �2.24 �0.58

Enthalpy �7.60 �8.40 �7.80 �7.20 �8.50 �8.00 �10.60 �8.20 �9.80 �7.20

Entropy �21.30 �22.40 �21.00 �20.40 �22.70 �19.90 �27.20 �2.20 �24.40 �21.30
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measure the quality of a predictor (see, e.g. Guo et al., 2014; Jia

et al., 2016; Liu et al., 2016c; Qiu et al., 2016a)

Sn¼1�Nþ�
Nþ

0 � Sn � 1

Sn¼1�Nþ�
Nþ

0 � Sp � 1

Acc¼ 1�Nþ� þN�þ
Nþ þN�

0 � Acc � 1

MCC¼
1� Nþ�

Nþ
þ

N�þ
N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
N�þ �Nþ�

Nþ

� �
1þ

Nþ� �N�þ
N�

� �s �1 �MCC � 1

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(7)

where Sn, Sp, Acc and MCC represent sensitivity, specificity, overall

accuracy, and Mathew’s correlation coefficient, respectively (Chen

et al., 2007). The total numbers of recombination hotspots and cold-

spots are denoted by Nþ and N�, respectively. The number of hot-

spot samples incorrectly predicted to be of coldspot is denoted by

Nþ� , while the number of coldspot samples incorrectly predicted to

be of hotspot is by Nþ� . As for the meanings of the four metrics in

Equation (7) along with their score regions, see Lin et al. (2014)

where a clear and incisive analysis has been elaborated and hence

there is no need to repeat here.

2.8 F-score
The F-score can be calculated by using the following equation:

Fi ¼
ð�x
þð Þ

i � �xiÞ2 þ ð�x
�ð Þ

i � �xiÞ2

1
nþ�1

Pnþ

k¼1 ðx
þð Þ

k;i �
�x
þð Þ

i Þ
2
þ 1

n��1

Pn�

k¼1 ðx
�ð Þ

k;i �
�x
�ð Þ

i Þ
2

(8)

where nþ stands for the total number of the positive samples, n– for

the total number of the negative samples, �x
þð Þ

i for the mean value of

the ith feature of entire positive samples, �x
�ð Þ

i for the mean value of

ith feature of entire negative samples, �xi for the mean value of the

ith feature of the total samples. x
þð Þ

k;i for the value of the ith feature

of the kth sample in the positive data set, and x
�ð Þ

k;i for the value of

the ith feature of the kth sample in the negative data set. The larger

the F-score is, the more important the feature is (Akay, 2009).

3 Results and discussion

3.1 Comparison with basic methods and existing

methods
Listed in Table 3 are the 5-fold cross-validation results by iRSpot-

EL on the benchmark dataset of Equation (1) (see Supplementary

Material S1). For facilitating comparison, listed in that table and

Figure 2 are also the corresponding results obtained by the RF-

DYMHC predictor (Jiang et al., 2007), IDQD predictor (Liu et al.,

2012), iRSpot-PseDNC predictor (Chen et al., 2013) and iRSpot-

TNCPseAAC (Qiu et al., 2014).

From the table, we can see the following. (i) Among the five pre-

dictors the newly proposed one achieved the highest success rates in

both Acc and MCC, the two most important metrics used to meas-

ure the quality of a predictor as elucidated in the follow-up text to

Equation (7). (ii) Although the Sn rate by the proposed predictor

was about 4% lower than that by IDQD, its Sp rate was about 7%

higher than that by IDQD. As mentioned in Section 2.7, the two

metrics are used to measure a predictor from two opposite angles,

and they are constrained with each other. Therefore, it is meaning-

less to use only one of the two for comparing the quality of two pre-

dictors. In other words, a meaningful comparison in this regard

should count the rates of both Sn and Sp, or even better, the rate of

their combination that is none but MCC. As shown in Table 3, the

MCC rate achieved by the proposed predictor iRSpot-EL is higher

than other existing predictors by about 3.5–17.7%.

3.2 Feature analysis
In order to further investigate the discriminant power of different

features and basic classifiers, the F-score method (Lin et al., 2014)

was adopted to analyze the seven basic classifiers listed in Table 2.

The top 10 most important features for each basic classifier are

listed in Table 4, from which we can see that the important features

between PseKNC and DACC classifiers are different, indicating that

these classifiers are mutually complementary. Therefore, perform-

ance improvement can be observed by combining these classifiers

via an ensemble learning approach. Some common patterns can also

be observed, for examples, CG, AT, TA, GC are very important for

all the six PseKNC classifiers, which is fully consistent with Jiang et

al (2011) study.

3.3 Performance on analysis of the whole genome
To further demonstrate its practical application, the genome-wide

analysis by iRSpot-EL was performed on the yeast chromosome III.

Fig. 1. A flowchart to show how the iRSpot-EL predictor works

Table 2. List of the seven basic classifiers selected by using affinity

ropagation clustering algorithm

Basic classifier Feature Dimension Fraction

Cð1) PseKNCa 20 0.25

Cð2) PseKNCb 22 0.05

Cð3) PseKNCc 26 0.10

Cð4) PseKNCd 26 0.00

Cð5) PseKNCe 67 0.05

Cð6) PseKNCf 72 0.05

Cð7) DACCg 1125 0.50

aThe optimal parameters were k ¼ 2, k¼ 4, w¼ 0.5.
bThe optimal parameters were k¼ 2, k¼ 6, w¼ 0.8.
cThe optimal parameters were k¼ 2, k¼ 10, w¼ 0.9.
dThe optimal parameters were k¼ 2, k¼ 10, w¼ 1.0.
eThe optimal parameters were k¼ 3, k¼ 3, w¼ 0.8.
fThe optimal parameters were k¼3, k¼ 8, w¼ 0.9.
gThe optimal parameter was lag¼ 5.
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In order to avoid the homology redundancy bias, the CD-HIT soft-

ware (version 4.6) (Li et al., 2001) was used to remove those DNA

sequences from the benchmark dataset that have >75% sequence

identity to the 1 kb length DNA fragments in chromosome III.

Trained with such a reduced benchmark dataset, the iRSpot-EL pre-

dictor was used to identify the hotspots in chromosome III with reli-

ability index value set as 6 as suggested by (Jiang et al., 2007). For

investigation into the effects of different parameters on the predict-

ive performance, the genome-wide prediction was conducted with

different sliding windows and step sizes. The predicted results of the

center position were smoothed by using the average value of 200-bp

in a sliding window. The results predicted by iRSpot-EL on yeast

chromosome III are given in Figure 3, where for facilitating the com-

parison the corresponding recombination profile by experiments

(Mancera et al., 2008) is also given. It can be clearly seen that the re-

combination profile predicted by iRSpot-EL is highly consistent

with that of experimental observations (Mancera et al., 2008), fur-

ther demonstrating that iRSpot-EL is indeed a very useful high-

throughput tool for genome-wide analysis of recombination spots.

Interestingly, we have also observed that the cases with lager sliding

window sizes tend to show better results. The reason is that larger

window sizes can incorporate more global sequence information,

which is critical for improving the performance (Liu et al., 2016a).

Another important observation is that the step size has little impact

on the predictive performance. Based on the aforementioned experi-

mental outcomes, we suggest the users to set the parameters of slid-

ing window size and its step size as 2000 and 200 bp, respectively,

for the genome-wide analysis when using iRSpot-EL.

3.4 Web server and user guide
As pointed out in two recent review papers (Chen et al., 2015b;

Chou, 2015), a prediction method with its web-server available will

attract more users. In view of this, the web-server for iRSpot-EL has

been established. Moreover, to maximize the convenience for users,

a step-by-step guide is provided below.

Step 1. Open the web server by clicking the link at http://bioinfor

matics.hitsz.edu.cn/iRSpot-EL/and you will see the home page of

iRSpot-EL. Click on the ReadMe button to see a brief introduction

about the server.

Step 2. Click on the Server button. Either type or copy/paste the

query DNA sequence into the input box. You can also upload your

Table 3. List of the metrics scores (cf. Eq.7) obtained by various

methods via 5-fold cross-validation on the same benchmark data-

set of Supporting Information S1

Methods Sn(%)f Sp(%)f Acc(%)f MCCf AUCg

RF-DYMHCa 73.01 86.56 80.40 0.6049 0.8777

IDQDb 79.52 81.82 80.77 0.6160 0.8822

iRSpot-PseDNCc 71.75 85.84 79.33 0.5830 0.8631

iRSpot-TNCPseAACd 76.56 70.99 73.52 0.4737 0.8138

iRSpot-ELe 75.29 88.81 82.65 0.6510 0.8922

aThe predictor reported in (Jiang et al., 2007).
bThe predictor reported in (Liu et al., 2012).
cThe predictor reported in (Chen et al., 2013).
dThe predictor reported in (Qiu et al., 2014).
eThe proposed predictor in this article.
fSee Equation (7) for the metrics definition.
gSee Figure 2 and its legend.

Table 4. List of the top 10 important features in the basic classifiers

Nos. PseKNCa PseKNCb PseKNCc PseKNCd PseKNCe PseKNCf DACCg

1 CG CG CG CG GCC GCC DAC(lag ¼ 2, F-tilt)

2 AT AT AT AT AAT AAT DCC(lag ¼ 1, F-shift, Shift)

3 TA TA TA TA TTA TTA DCC(lag ¼ 1, Energy, Shift)

4 GC GC GC GC CGC CGC DCC(lag ¼ 1, F-tilt, Shift)

5 CC CC CC CC TAA TAA DAC(lag ¼ 1, F-shift)

6 AA AA AA AA ATT ATT DCC(lag ¼ 1, Shift, F-shift)

7 AC AC AC AC CGG CGG DCC(lag ¼ 1, Shift, Energy)

8 CA CA CA CA CCG CCG DCC(lag ¼ 1, Roll, F-tilt)

9 TT k¼ 6 TT TT ACG ACG DCC(lag ¼ 1, F-shift, F-tilt)

10 GG TT GG GG GGC GGC DCC(lag ¼ 1, F-tilt, F-shift)

aParameters were k¼ 2, k¼ 4, w¼ 0.5, C¼ 215, and c¼2.
bParameters were k¼2, k¼ 6, w¼ 0.8, C¼ 215, and c¼23.
cParameters were k¼ 2, k¼ 10, w¼0.9, C¼ 215, and c¼23.
dParameters were k¼2, k¼ 10, w¼ 1.0, C¼215 and c ¼ 23.
eParameters were k¼ 3, k¼ 3, w¼ 0.8, C¼ 213, and c ¼ 23.
fParameters were k¼ 3, k¼ 8, w¼ 0.9, C¼ 213, and c ¼ 23.
gParameters were lag¼ 5, C¼ 25, and c ¼ 2�5. The values of DNA dinucleotide properties are given in Table 1.

Fig. 2. The ROC (receiver operating characteristic) curves obtained by differ-

ent methods. The area under the ROC curves is called AUC. They are 0.8922,

0.8138, 0.8822, 0.8631 and 0.8777 for iRSpot-EL, iRSpot-TNCPseAAC, IDQD,

iRSpot-PseDNC and RF-DYMHC, respectively. The larger the AUC, the better

the corresponding predictor is (Davis and Goadrich, 2006; Fawcett, 2005)
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input data via the Browse button. The input sequence should be in

the FASTA format. For the examples of sequences in FASTA format,

click the Example button right above the input box.

Step 3. Users are able to set three parameters for iRSpot-EL,

including the size of sliding windows and step size. For more infor-

mation of these parameters, please click the ‘?’ symbol nearby.

Step 4. Click on the Submit button to see the predicted results.

For example, if you use the query DNA sequence in the Example

window as the input with ‘2’ for the size of sliding windows and

‘200’ for the step size, you will see the following results on the

screen: (i) The query sequence contains one hotspot (sub-sequences:

3601–4200), and one coldspot (sub-sequence: 1–2400). (ii) By click-

ing Sequence Information, you will see the sequence information of

the corresponding sub-sequence. (iii) By clicking Detailed results,

you will see the detailed prediction results for each sliding window

in the sub-sequence.

Step 5. The distributions of the hotspots and coldspots along the

input sequence can be visualized by clicking the Result visualization

button near the query sequence name.

4 Conclusion

The iRSpot-EL predictor is a new bioinformatics tool for predicting

DNA recombination spots. When compared with the existing state-

of-the-art predictors in this area, the new predictor yielded remark-

ably better prediction quality as demonstrated by rigorous cross-

validation and genome-wide analysis. We anticipate that the web-

server of iRSpot-EL will become a very useful high-throughput tool

for conducting genome analysis.
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